Lipatov, A. et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4, eaat0491 (2018).
Miranda, A., Halim, J., Barsoum, M. & Lorke, A. Electronic properties of freestanding Ti3C2Tx MXene monolayers. Appl. Phys. Lett. 108, 033102 (2016).
Li, R., Zhang, L., Shi, L. & Wang, P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752â3759 (2017).
Chen, Y. et al. Superior synergistic osteogenesis of MXene-based hydrogel through supersensitive drug release at mild heat. Adv. Funct. Mater. 34, 2309191 (2024).
Zhang, J., Fu, Y. & Mo, A. Multilayered titanium carbide MXene film for guided bone regeneration. Int. J. Nanomed. 14, 10091â10103 (2019).
Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137â1140 (2016).
Liu, J. et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017).
Wan, S. et al. High-strength scalable MXene films through bridging-induced densification. Science 374, 96â99 (2021).
Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).
Levitt, A., Zhang, J., Dion, G., Gogotsi, Y. & Razal, J. M. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 30, 2000739 (2020).
Wu, Z. et al. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv. Funct. Mater. 31, 2102874 (2021).
Zhao, T. et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5â10âTHz band. Nat. Photon. 17, 622â628 (2023).
Wu, Z. et al. Hydroiodic-acid-initiated dense yet porous Ti3C2Tx MXene monoliths toward superhigh areal energy storage. Adv. Mater. 35, 2300580 (2023).
Xia, Y. et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409â412 (2018).
Lin, H., Chen, Y. & Shi, J. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5, 1800518 (2018).
Chen, L., Dai, X., Feng, W. & Chen, Y. Biomedical applications of MXenes: from nanomedicine to biomaterials. Acc. Mater. Res. 3, 785â798 (2022).
VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).
Wu, Z., Shang, T., Deng, Y., Tao, Y. & Yang, Q.-H. The assembly of MXenes from 2D to 3D. Adv. Sci. 7, 1903077 (2020).
Zhang, C. Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 60, 417â434 (2021).
Long, Y. et al. Roles of metal ions in MXene synthesis, processing and applications: a perspective. Adv. Sci. 9, 2200296 (2022).
Niksan, O. et al. MXene guides microwaves through 3D polymeric structures. Mater. Today 73, 47â55 (2024).
Zhang, J. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020).
Lipton, J. et al. Scalable, highly conductive, and micropatternable MXene films for enhanced electromagnetic interference shielding. Matter 3, 546â557 (2020).
Guo, T. et al. Large-area smooth conductive films enabled by scalable slot-die coating of Ti3C2Tx MXene aqueous inks. Adv. Funct. Mater. 33, 2213183 (2023).
Li, L. & Cheng, Q. MXene based nanocomposite films. Exploration 2, 20220049 (2022).
Ling, Z. et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl Acad. Sci. USA 111, 16676â16681 (2014).
Chao, M. et al. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15, 9746â9758 (2021).
Deng, Y. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31, 1902432 (2019).
Shi, X. et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale âbrick-and-mortarâ architecture. ACS Nano 13, 649â659 (2019).
Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3, 296â302 (2020).
Lee, G. S. et al. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14, 11722â11732 (2020).
Shen, J. et al. 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 28, 1801511 (2018).
Shang, T. et al. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29, 1903960 (2019).
Wan, S. et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 13, 7340 (2022).
Wan, S., Jiang, L. & Cheng, Q. Design principles of high-performance graphene films: Interfaces and alignment. Matter 3, 696â707 (2020).
Qi, C. et al. Capillary shrinkage of graphene oxide hydrogels. Sci. China Mater. 63, 1870â1877 (2019).
Tao, Y. et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci Rep. 3, 2975 (2013).
Liang, X. et al. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 32, 2000165 (2020).
Wang, J. et al. Artificial superstrong silkworm silk surpasses natural spider silks. Matter 5, 4396â4406 (2022).
Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J. & Zhang, C. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214â240 (2021).
Come, J. et al. Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy 17, 27â35 (2015).
Krecker, M. C., Bukharina, D., Hatter, C. B., Gogotsi, Y. & Tsukruk, V. V. Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv. Funct. Mater. 30, 2004554 (2020).
Wang, X. Y. et al. Enhancing the chemical stability of MXene through synergy of hydrogen bond and coordination bond in aqueous solution. Small Methods 7, 2201694 (2023).
Li, H. et al. A constrained assembly strategy for high-strength natural nanoclay film. ACS Nano 16, 6224â6232 (2022).
Wan, S. et al. High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20, 624â631 (2021).
Wan, S. et al. Strong sequentially bridged MXene sheets. Proc. Natl Acad. Sci. USA 117, 27154â27161 (2020).
Wan, S., Xu, F., Jiang, L. & Cheng, Q. Superior fatigue resistant bioinspired graphene-based nanocomposite via synergistic interfacial interactions. Adv. Funct. Mater. 27, 1605636 (2017).
Wan, S. & Cheng, Q. Fatigue-resistant bioinspired graphene-based nanocomposites. Adv. Funct. Mater. 27, 1703459 (2017).
Qi, C. et al. A sericin/graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Theranostics 10, 741â756 (2020).
Fu, Y., Zhang, J., Lin, H. & Mo, A. 2D titanium carbide (MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: in vitro and in vivo evaluations for bone regeneration. Mater. Sci. Eng. C 118, 111367 (2021).
Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 290, 7633â7644 (2017).
Mirkhani, S. A., Shayesteh Zeraati, A., Aliabadian, E., Naguib, M. & Sundararaj, U. High dielectric constant and low dielectric loss via poly(vinyl alcohol)/Ti3C2Tx MXene nanocomposites. ACS Appl. Mater. Interfaces 11, 18599â18608 (2019).