Thursday, January 9, 2025
No menu items!
HomeNatureScalable ultrastrong MXene films with superior osteogenesis

Scalable ultrastrong MXene films with superior osteogenesis

  • Lipatov, A. et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4, eaat0491 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miranda, A., Halim, J., Barsoum, M. & Lorke, A. Electronic properties of freestanding Ti3C2Tx MXene monolayers. Appl. Phys. Lett. 108, 033102 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Li, R., Zhang, L., Shi, L. & Wang, P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Superior synergistic osteogenesis of MXene-based hydrogel through supersensitive drug release at mild heat. Adv. Funct. Mater. 34, 2309191 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J., Fu, Y. & Mo, A. Multilayered titanium carbide MXene film for guided bone regeneration. Int. J. Nanomed. 14, 10091–10103 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017).

    Article 

    Google Scholar
     

  • Wan, S. et al. High-strength scalable MXene films through bridging-induced densification. Science 374, 96–99 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Levitt, A., Zhang, J., Dion, G., Gogotsi, Y. & Razal, J. M. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 30, 2000739 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z. et al. Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv. Funct. Mater. 31, 2102874 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, T. et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5–10 THz band. Nat. Photon. 17, 622–628 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, Z. et al. Hydroiodic-acid-initiated dense yet porous Ti3C2Tx MXene monoliths toward superhigh areal energy storage. Adv. Mater. 35, 2300580 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xia, Y. et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, H., Chen, Y. & Shi, J. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5, 1800518 (2018).

    Article 

    Google Scholar
     

  • Chen, L., Dai, X., Feng, W. & Chen, Y. Biomedical applications of MXenes: from nanomedicine to biomaterials. Acc. Mater. Res. 3, 785–798 (2022).

    Article 
    CAS 

    Google Scholar
     

  • VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Z., Shang, T., Deng, Y., Tao, Y. & Yang, Q.-H. The assembly of MXenes from 2D to 3D. Adv. Sci. 7, 1903077 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C. Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 60, 417–434 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Long, Y. et al. Roles of metal ions in MXene synthesis, processing and applications: a perspective. Adv. Sci. 9, 2200296 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Niksan, O. et al. MXene guides microwaves through 3D polymeric structures. Mater. Today 73, 47–55 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lipton, J. et al. Scalable, highly conductive, and micropatternable MXene films for enhanced electromagnetic interference shielding. Matter 3, 546–557 (2020).

    Article 

    Google Scholar
     

  • Guo, T. et al. Large-area smooth conductive films enabled by scalable slot-die coating of Ti3C2Tx MXene aqueous inks. Adv. Funct. Mater. 33, 2213183 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, L. & Cheng, Q. MXene based nanocomposite films. Exploration 2, 20220049 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, Z. et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl Acad. Sci. USA 111, 16676–16681 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chao, M. et al. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15, 9746–9758 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31, 1902432 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shi, X. et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano 13, 649–659 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3, 296–302 (2020).

    Article 

    Google Scholar
     

  • Lee, G. S. et al. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14, 11722–11732 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, J. et al. 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 28, 1801511 (2018).

    Article 

    Google Scholar
     

  • Shang, T. et al. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 29, 1903960 (2019).

    Article 

    Google Scholar
     

  • Wan, S. et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 13, 7340 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, S., Jiang, L. & Cheng, Q. Design principles of high-performance graphene films: Interfaces and alignment. Matter 3, 696–707 (2020).

    Article 

    Google Scholar
     

  • Qi, C. et al. Capillary shrinkage of graphene oxide hydrogels. Sci. China Mater. 63, 1870–1877 (2019).

    Article 

    Google Scholar
     

  • Tao, Y. et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci Rep. 3, 2975 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, X. et al. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 32, 2000165 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Artificial superstrong silkworm silk surpasses natural spider silks. Matter 5, 4396–4406 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J. & Zhang, C. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Come, J. et al. Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy 17, 27–35 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Krecker, M. C., Bukharina, D., Hatter, C. B., Gogotsi, Y. & Tsukruk, V. V. Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv. Funct. Mater. 30, 2004554 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. Y. et al. Enhancing the chemical stability of MXene through synergy of hydrogen bond and coordination bond in aqueous solution. Small Methods 7, 2201694 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. A constrained assembly strategy for high-strength natural nanoclay film. ACS Nano 16, 6224–6232 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, S. et al. High-strength scalable graphene sheets by freezing stretch-induced alignment. Nat. Mater. 20, 624–631 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, S. et al. Strong sequentially bridged MXene sheets. Proc. Natl Acad. Sci. USA 117, 27154–27161 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, S., Xu, F., Jiang, L. & Cheng, Q. Superior fatigue resistant bioinspired graphene-based nanocomposite via synergistic interfacial interactions. Adv. Funct. Mater. 27, 1605636 (2017).

    Article 

    Google Scholar
     

  • Wan, S. & Cheng, Q. Fatigue-resistant bioinspired graphene-based nanocomposites. Adv. Funct. Mater. 27, 1703459 (2017).

    Article 

    Google Scholar
     

  • Qi, C. et al. A sericin/graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Theranostics 10, 741–756 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Y., Zhang, J., Lin, H. & Mo, A. 2D titanium carbide (MXene) nanosheets and 1D hydroxyapatite nanowires into free standing nanocomposite membrane: in vitro and in vivo evaluations for bone regeneration. Mater. Sci. Eng. C 118, 111367 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 290, 7633–7644 (2017).

    Article 

    Google Scholar
     

  • Mirkhani, S. A., Shayesteh Zeraati, A., Aliabadian, E., Naguib, M. & Sundararaj, U. High dielectric constant and low dielectric loss via poly(vinyl alcohol)/Ti3C2Tx MXene nanocomposites. ACS Appl. Mater. Interfaces 11, 18599–18608 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments