Thursday, May 22, 2025
No menu items!
HomeNatureRu and W isotope systematics in ocean island basalts reveals core leakage

Ru and W isotope systematics in ocean island basalts reveals core leakage

  • Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rizo, H. et al. 182W evidence for core-mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).

    Article 

    Google Scholar
     

  • Horton, F. et al. Highest terrestrial 3He/4He credibly from the core. Nature 623, 90–94 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, R. J., Morgan, J. W. & Horan, M. F. Osmium-187 enrichment in some plumes: evidence for core-mantle interaction? Science 269, 819–822 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vockenhuber, C. et al. New half-life measurement of 182Hf: improved chronometer for the early solar system. Phys. Rev. Lett. 93, 172501 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Archer, G. J. et al. Origin of W anomalies in ocean island basalts. Geochem. Geophys. Geosyst. 24, e2022GC010688 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bouhifd, M. A., Jephcoat, A. P., Heber, V. S. & Kelley, S. P. Helium in Earth’s early core. Nat. Geosci. 6, 982–986 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferrick, A. L. & Korenaga, J. Long-term core–mantle interaction explains W-He isotope heterogeneities. Proc. Natl Acad. Sci. USA 120, e2215903120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korenaga, J. & Marchi, S. Vestiges of impact-driven three-phase mixing in the chemistry and structure of Earth’s mantle. Proc. Natl Acad. Sci. USA 120, e2309181120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willhite, L. N., Finlayson, V. A. & Walker, R. J. Evolution of tungsten isotope systematics in the Mauna Kea volcano provides new constraints on anomalous µ182W and high 3He/4He in the mantle. Earth Planet. Sci. Lett. 640, 118795 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tusch, J. et al. Long-term preservation of Hadean protocrust in Earth’s mantle. Proc. Natl Acad. Sci. USA 119, e2120241119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ireland, T. J., Walker, R. J. & Brandon, A. D. 186Os-187Os systematics of Hawaiian picrites revisited: new insights into Os isotopic variations in ocean island basalts. Geochim. Cosmochim. Acta 75, 4456–4475 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bennett, V. C., Norman, M. D. & Garcia, M. O. Rhenium and platinum group element abundances correlated with mantle source components in Hawaiian picrites: sulphides in the plume. Earth Planet. Sci. Lett. 183, 513–526 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yoshino, T., Makino, Y., Suzuki, T. & Hirata, T. Grain boundary diffusion of W in lower mantle phase with implications for isotopic heterogeneity in oceanic island basalts by core-mantle interactions. Earth Planet. Sci. Lett. 530, 115887 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kaare-Rasmussen, J. et al. Tungsten isotopes in Baffin Island lavas: evidence of Iceland plume evolution. Geochem. Perspect. Lett. 28, 7–12 (2023).

    Article 

    Google Scholar
     

  • Walker, R. J. et al. 182W and 187Os constraints on the origin of siderophile isotopic heterogeneity in the mantle. Geochim. Cosmochim. Acta 363, 15–39 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rubie, D. C. et al. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 353, 1141–1144 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou, C. L. Fractionation of siderophile elements in the Earth’s upper mantle. In Proc. 9th Lunar and Planetary Science Conference 219–230 (Pergamon Press, 1978).

  • Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stubbs, D. The Tungsten Isotopic Evolution of the Silicate Earth 143–217. PhD thesis, Univ. of Bristol (2021).

  • Bermingham, K. R. & Walker, R. J. The ruthenium isotopic composition of the oceanic mantle. Earth Planet. Sci. Lett. 474, 466–473 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dauphas, N., Hopp, T. & Nesvorný, D. Bayesian inference on the isotopic building blocks of Mars and Earth. Icarus 408, 115805 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Render, J., Brennecka, G. A., Burkhardt, C. & Kleine, T. Solar System evolution and terrestrial planet accretion determined by Zr isotopic signatures of meteorites. Earth Planet. Sci. Lett. 595, 117748 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fischer-Gödde, M. & Kleine, T. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature 541, 525–527 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Touboul, M., Puchtel, I. S. & Walker, R. J. 182W Evidence for long-term preservation of early mantle differentiation products. Science 355, 1065–1069 (2012).

    Article 
    ADS 

    Google Scholar
     

  • McDonough, W. F. in Treatise on Geochemistry Vol. 2 (eds Holland H. D. & Turekian, K. K.) 547–568 (Elsevier, 2003).

  • Waters, C. L. et al. Sulfide mantle source heterogeneity recorded in basaltic lavas from the Azores. Geochim. Cosmochim. Acta 268, 422–445 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Day, J. M. D. Hotspot volcanism and highly siderophile elements. Chem. Geol. 341, 50–74 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mungall, J. & Brenan, J. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim. Cosmochim. Acta 125, 265–289 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Badro, J., Siebert, J. & Nimmo, F. An early geodynamo driven by exsolution of mantle components from Earth’s core. Nature 536, 326–328 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chabot, N. L., Wollack, E. A., Humayun, M. & Shank, E. M. The effect of oxygen as a light element in metallic liquids on partitioning behavior. Meteorit. Planet. Sci. 50, 530–546 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audétat, A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures—implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim. Cosmochim. Acta 84, 593–613 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Suer, T. A. et al. Reconciling metal–silicate partitioning and late accretion in the Earth. Nat. Commun. 12, 2913 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puchtel, I. S., Blichert-Toft, J., Touboul, M., Horan, M. F. & Walker, R. J. The coupled 182W-142Nd record of early terrestrial mantle differentiation. Geochem. Geophys. Geosyst. 17, 2168–2193 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • de Leeuw, G. A. M., Ellam, R. M., Stuart, F. M. & Carlson, R. W. 142Nd/144Nd inferences on the nature and origin of the source of high 3He/4He magmas. Earth Planet. Sci. Lett. 472, 62–68 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Horan, M. F. et al. Tracking Hadean processes in modern basalts with 142-Neodymium. Earth Planet. Sci. Lett. 484, 184–191 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jackson, M. G. & Carlson, R. W. Homogeneous superchondritic 142Nd/144Nd in the mid-ocean ridge basalt and ocean island basalt mantle. Geochem. Geophys. Geosyst. 13, Q06011 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Chen, K. et al. Platinum-group element abundances and Re–Os isotopic systematics of the upper continental crust through time: evidence from glacial diamictites. Geochim. Cosmochim. Acta 191, 1–16 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Becker, H. et al. Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 70, 4528–4550 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hopp, T., Budde, G. & Kleine, T. Heterogeneous accretion of Earth inferred from Mo-Ru isotope systematics. Earth Planet. Sci. Lett. 534, 116065 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vermeesch, P. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jansen, M. W. et al. Upper mantle control on the W isotope record of shallow level plume and intraplate volcanic settings. Earth Planet. Sci. Lett. 585, 117507 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Helz, R. T. & Wright, T. L. Drilling Report and Core Logs of the 1981 Drilling of Kilauea Iki Lava Lake. Open-file report 83-326 (USGS, 1981).

  • Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kent, A. J. R. et al. Widespread assimilation of a seawater-derived component at Loihi seamount, Hawaii. Geochim. Cosmochim. Acta 63, 2749–2761 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mukhopadhyay, S., Lassiter, J. C., Farley, K. A. & Bogue, S. W. Geochemistry of Kauai shield-stage lavas: implications for the chemical evolution of the Hawaiian plume. Geochem. Geophys. Geosyst. 4, 1009 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Cross, W. Lavas of Hawaii and their Relations. USGS professional paper 88 (USGS, 1915).

  • Roden, M. F., Trull, T., Hart, S. R. & Frey, F. A. New He, Nd, Pb, and Sr isotopic constraints on the constitution of the Hawaiian plume: results from Koolau Volcano, Oahu, Hawaii, USA. Geochim. Cosmochim. Acta 58, 1431–1440 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Appel, H., Wörner, G., Alvarado, G., Rundle, C. & Kussmaul, S. Age relations in igneous rocks from Costa Rica. Profil 7, 63–69 (1994).


    Google Scholar
     

  • Messling, N., Wörner, G. & Willbold, M. Ancient mantle plume components constrained by tungsten isotope variability in arc lavas. Geochem. Perspect. Lett. 26, 31–35 (2023).

    Article 

    Google Scholar
     

  • Schmincke, H. U. & Sunkel, G. Carboniferous submarine volcanism at Herbornseelbach (Lahn-Dill area, Germany). Geol. Rundschau 76, 709–734 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nutman, A. P., Bennett, V. C., Friend, C. R. L. & Yi, K. Eoarchean contrasting ultra-high-pressure to low-pressure metamorphisms (<250 to >1000 °C/GPa) explained by tectonic plate convergence in deep time. Precambrian Res. 344, 105770 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Waterton, P. et al. No mantle residues in the Isua Supracrustal Belt. Earth Planet. Sci. Lett. 579, 117348 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zuo, J. et al. Earth’s earliest phaneritic ultramafic rocks: mantle slices or crustal cumulates? Geochem. Geophys. Geosyst. 23, e2022GC010519 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Fischer-Gödde, M., Burkhardt, C., Kruijer, T. S. & Kleine, T. Ru isotope heterogeneity in the solar protoplanetary disk. Geochim. Cosmochim. Acta 168, 151–171 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hopp, T., Fischer-Gödde, M. & Kleine, T. Ruthenium isotope fractionation in protoplanetary cores. Geochim. Cosmochim. Acta 223, 75–89 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Avtokratova, T. D. in Analytical Chemistry of Ruthenium Ch. 4, 131–157 (1963).

  • Yoshida, N., Ono, T., Yoshida, R., Amano, Y. & Abe, H. Decomposition behavior of gaseous ruthenium tetroxide under atmospheric conditions assuming evaporation to dryness accident of high-level liquid waste. J. Nucl. Sci. Technol. 57, 1256–1264 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Koda, Y. Distillation of ruthenium tetraoxide with volatile acids. J. Inorg. Nucl. Chem. 25, 314–315 (1963).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. H., Papanastassiou, D. A. & Wasserburg, G. J. Ruthenium endemic isotope effects in chondrites and differentiated meteorites. Geochim. Cosmochim. Acta 74, 3851–3862 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tusch, J. et al. Uniform 182W isotope compositions in Eoarchean rocks from the Isua region, SW Greenland: the role of early silicate differentiation and missing late veneer. Geochim. Cosmochim. Acta 257, 284–310 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Budde, G., Archer, G. J., Tissot, F. L. H., Tappe, S. & Kleine, T. Origin of the analytical 183 W effect and its implications for tungsten isotope analyses. J. Anal. At. Spectrom. 37, 2005–2021 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kruijer, T. S. & Kleine, T. No 182W excess in the Ontong Java Plateau source. Chem. Geol. 485, 24–31 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peters, B. J., Mundl-Petermeier, A., Carlson, R. W., Walker, R. J. & Day, J. M. D. Combined lithophile-siderophile isotopic constraints on Hadean processes preserved in Ocean Island basalt sources. Geochem. Geophys. Geosyst. 22, e2020GC009479 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Savina, M. R. et al. Extinct technetium in silicon carbide stardust grains: implications for stellar nucleosynthesis. Science 303, 649–653 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hopp, T., Fischer-Gödde, M. & Kleine, T. Ruthenium stable isotope measurements by double spike MC-ICPMS. J. Anal. At. Spectrom. 31, 1515–1526 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fischer-Gödde, M., Becker, H. & Wombacher, F. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem. Geol. 280, 365–383 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Palme, H. & O’Neill, H. S. Cosmochemical Estimates of Mantle Composition. Treatise on Geochemistry 2nd edn, Vol. 3 (eds Turekian, K. K. & Holland, H. D.) 1–39 (Elsevier, 2014).

  • Fischer-Gödde, M., Becker, H. & Wombacher, F. Rhodium, gold and other highly siderophile element abundances in chondritic meteorites. Geochim. Cosmochim. Acta 74, 356–379 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Horan, M. F., Walker, R. J., Morgan, J. W., Grossman, J. N. & Rubin, A. E. Highly siderophile elements in chondrites. Chem. Geol. 196, 27–42 (2003).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments