Wednesday, October 9, 2024
No menu items!
HomeNatureRobust chemical analysis with graphene chemosensors and machine learning

Robust chemical analysis with graphene chemosensors and machine learning

  • Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. BME-17, 70–71 (1970).


    Google Scholar
     

  • Bergveld, P. Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 88, 1–20 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Bergveld, P. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. 19, 342–351 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • Fu, W., Jiang, L., van Geest, E. P., Lima, L. M. C. & Schneider, G. F. Sensing at the surface of graphene field‐effect transistors. Adv. Mater. 29, 1603610 (2017).


    Google Scholar
     

  • Saba, G. K. et al. The development and validation of a profiling glider deep ISFET-based pH sensor for high resolution observations of coastal and ocean acidification. Front. Mar. Sci. 6, 664 (2019).


    Google Scholar
     

  • Margarit-Taulé, J. M., Martín-Ezquerra, M., Escudé-Pujol, R., Jiménez-Jorquera, C. & Liu, S.-C. Cross-compensation of FET sensor drift and matrix effects in the industrial continuous monitoring of ion concentrations. Sens. Actuators B Chem. 353, 131123 (2022).


    Google Scholar
     

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weston, M., Geng, S. & Chandrawati, R. Food sensors: challenges and opportunities. Adv. Mater. Technol. 6, 2001242 (2021).

    CAS 

    Google Scholar
     

  • Xue, M. et al. Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13, 5064 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fakih, I. et al. Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nat. Commun. 11, 3226 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • Treuting, R. G. & Arnold, S. M. Orientation habits of metal whiskers. Acta Metall. 5, 598 (1957).

    CAS 

    Google Scholar
     

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heller, I. et al. Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J. Am. Chem. Soc. 132, 17149–17156 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Ang, P. K., Chen, W., Wee, A. T. S. & Loh, K. P. Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392–14393 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Knopfmacher, O. et al. Nernst Limit in Dual-Gated Si-Nanowire FET Sensors. Nano Lett. 10, 2268–2274 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. et al. Carbon nanotube field-effect transistor based pH sensors. Carbon 205, 540–545 (2023).

    CAS 

    Google Scholar
     

  • Fu, W. et al. High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5, 12104–12110 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shang, X., Park, C. H., Jung, G. Y., Kwak, S. K. & Oh, J. H. Highly enantioselective graphene-based chemical sensors prepared by chiral noncovalent functionalization. ACS Appl. Mater. Interfaces 10, 36194–36201 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 3318–3322 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, N., Li, P., Xue, W. & Xu, J. Simple graphene chemiresistors as pH sensors: fabrication and characterization. Meas. Sci. Technol. 22, 107002 (2011).

    ADS 

    Google Scholar
     

  • Lee, M. H. et al. Apparent pH sensitivity of solution-gated graphene transistors. Nanoscale 7, 7540–7544 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, S.-H. et al. Super-Nernstian pH sensor based on anomalous charge transfer doping of defect-engineered graphene. Nano Lett. 21, 34–42 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mailly-Giacchetti, B. et al. pH sensing properties of graphene solution-gated field-effect transistors. J. Appl. Phys. 114, 084505 (2013).

    ADS 

    Google Scholar
     

  • Gao, J. et al. Graphene-based field-effect transistors integrated with microfluidic chip for real-time pH monitoring of seawater. J. Mater. Sci., Mater. Electron. 31, 15372–15380 (2020).

    CAS 

    Google Scholar
     

  • Helmholtz, H. Studien über electrische Grenzschichten. Ann. Phys. Chem. 243, 337–382 (1879).

    ADS 

    Google Scholar
     

  • Gouy, M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910).

    CAS 

    Google Scholar
     

  • Chapman, D. L. LI. A contribution to the theory of electrocapillarity. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 25, 475–481 (1913).


    Google Scholar
     

  • Wang, Z. L. & Wang, A. C. On the origin of contact-electrification. Mater. Today 30, 34–51 (2019).


    Google Scholar
     

  • Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Salvo, P. et al. Graphene-based devices for measuring pH. Sens. Actuators B Chem. 256, 976–991 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Fu, W. et al. Graphene transistors are insensitive to pH changes in solution. Nano Lett. 11, 3597–3600 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • LeBow, N. et al. Real-time edge neuromorphic tasting from chemical microsensor arrays. Front. Neurosci. 15, 771480 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, K.-M., Chang, C.-T., Chao, K.-Y. & Lin, C.-H. A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors. Sensors 10, 4643–4654 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinha, S. et al. Temperature and temporal drift compensation for Al2O3-gate ISFET-based pH sensor using machine learning techniques. Microelectron. J. 97, 104710 (2020).

    CAS 

    Google Scholar
     

  • Larose, D. T. & Larose, C. D. in Discovering Knowledge in Data: An Introduction to Data Mining 149–164 (Wiley, 2014).

  • Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989).


    Google Scholar
     

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Proc. 31st International Conference on Neural Information Processing Systems Vol. 30, 4768–4777 (ACM, 2017).

  • Chauhan, S. L., Priyanka, Mandal, K. D., Paul, B. R. & Maji, C. Adulteration of milk: a review. Int. J. Chem. Stud. 7, 2055–2057 (2019).

    CAS 

    Google Scholar
     

  • Techane, T. Effect of adulterants on quality and safety of cow milk: a review. Int. J. Diabetes Metab. Disord. 8, 277–287 (2023).


    Google Scholar
     

  • Das, S., Goswami, B. & Biswas, K. Milk adulteration and detection: a review. 14, 4–18 (2016).

  • Danezis, G. P., Tsagkaris, A. S., Camin, F., Brusic, V. & Georgiou, C. A. Food authentication: techniques, trends & emerging approaches. Trends Analt. Chem. 85, 123–132 (2016).

    CAS 

    Google Scholar
     

  • Aung, M. M. & Chang, Y. S. Traceability in a food supply chain: safety and quality perspectives. Food Control 39, 172–184 (2014).


    Google Scholar
     

  • Wang, Z., DeWitt, J. C., Higgins, C. P. & Cousins, I. T. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 51, 2508–2518 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Glüge, J. et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 22, 2345–2373 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cousins, I. T. et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ. Sci. Process. Impacts 21, 1803–1815 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments