Thursday, July 31, 2025
No menu items!
HomeNatureRepurposing haemoproteins for asymmetric metal-catalysed H atom transfer

Repurposing haemoproteins for asymmetric metal-catalysed H atom transfer

  • Maurizio Peruzzini, R. P. Recent Advances in Hydride Chemistry 1st edn (Elsevier Science, 2002).

  • Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    CAS 

    Google Scholar
     

  • Wu, J. & Ma, Z. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Org. Chem. Front. 8, 7050–7076 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Green, S. A. et al. The high chemofidelity of metal-catalyzed hydrogen atom transfer. Acc. Chem. Res. 51, 2628–2640 (2018).

    CAS 

    Google Scholar
     

  • Sibi, M. P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. Chem. Rev. 103, 3263–3296 (2003).

    CAS 

    Google Scholar
     

  • Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    CAS 

    Google Scholar
     

  • Schilter, D., Camara, J. M., Huynh, M. T., Hammes-Schiffer, S. & Rauchfuss, T. B. Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem. Rev. 116, 8693–8749 (2016).

    CAS 

    Google Scholar
     

  • Lee, W.-C. C., Wang, D.-S., Zhu, Y. & Zhang, X. P. Iron(III)-based metalloradical catalysis for asymmetric cyclopropanation via a stepwise radical mechanism. Nat. Chem. 15, 1569–1580 (2023).

    CAS 

    Google Scholar
     

  • Mukaiyama, T. et al. Oxidation-reduction hydration of olefins with molecular oxygen and 2-propanol catalyzed by bis(acetylacetonato)cobalt(II). Chem. Lett. 18, 449–452 (1989).


    Google Scholar
     

  • Waser, J. & Carreira, E. M. Convenient synthesis of alkylhydrazides by the cobalt-catalyzed hydrohydrazination reaction of olefins and azodicarboxylates. J. Am. Chem. Soc. 126, 5676–5677 (2004).

    CAS 

    Google Scholar
     

  • Choi, J., Tang, L. & Norton, J. R. Kinetics of hydrogen atom transfer from (η5-C5H5)Cr(CO)3H to various olefins: influence of olefin structure. J. Am. Chem. Soc. 129, 234–240 (2007).

    CAS 

    Google Scholar
     

  • Ishikawa, H. et al. Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. J. Am. Chem. Soc. 131, 4904–4916 (2009).

    CAS 

    Google Scholar
     

  • Ma, X. S. & Herzon, S. B. Intermolecular hydropyridylation of unactivated alkenes. J. Am. Chem. Soc. 138, 8718–8721 (2016).

    CAS 

    Google Scholar
     

  • Lo, J. C., Yabe, Y. & Baran, P. S. A practical and catalytic reductive olefin coupling. J. Am. Chem. Soc. 136, 1304–1307 (2014).

    CAS 

    Google Scholar
     

  • Discolo, C. A., Touney, E. E. & Pronin, S. V. Catalytic asymmetric radical-polar crossover hydroalkoxylation. J. Am. Chem. Soc. 141, 17527–17532 (2019).

    CAS 

    Google Scholar
     

  • Ebisawa, K. et al. Catalyst- and silane-controlled enantioselective hydrofunctionalization of alkenes by cobalt-catalyzed hydrogen atom transfer and radical-polar crossover. J. Am. Chem. Soc. 142, 13481–13490 (2020).

    CAS 

    Google Scholar
     

  • Zhang, G. & Zhang, Q. Cobalt-catalyzed HAT reaction for asymmetric hydrofunctionalization of alkenes and nucleophiles. Chem Catal. 3, 100526 (2023).

    CAS 

    Google Scholar
     

  • Wang, J.-J. et al. Mimicking hydrogen-atom-transfer-like reactivity in copper-catalysed olefin hydrofunctionalization. Nat. Catal. 7, 838–846 (2024).

    CAS 

    Google Scholar
     

  • Buzsaki, S. R. et al. Fe/thiol cooperative hydrogen atom transfer olefin hydrogenation: mechanistic insights that inform enantioselective catalysis. J. Am. Chem. Soc. 146, 17296–17310 (2024).

    CAS 

    Google Scholar
     

  • Hammer, S. C., Marjanovic, A., Dominicus, J. M., Nestl, B. M. & Hauer, B. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis. Nat. Chem. Biol. 11, 121–126 (2015).

    CAS 

    Google Scholar
     

  • Gergel, S. et al. Engineered cytochrome P450 for direct arylalkene-to-ketone oxidation via highly reactive carbocation intermediates. Nat. Catal. 6, 606–617 (2023).

    CAS 

    Google Scholar
     

  • Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Vargas, D. A. et al. Biocatalytic strategy for the construction of sp3-rich polycyclic compounds from directed evolution and computational modelling. Nat. Chem. 16, 817–826 (2024).

    CAS 

    Google Scholar
     

  • Bruffy, S. K. et al. Biocatalytic asymmetric aldol addition into unactivated ketones. Nat. Chem. 16, 2076–2083 (2024).

    CAS 

    Google Scholar
     

  • Nakano, Y., Biegasiewicz, K. F. & Hyster, T. K. Biocatalytic hydrogen atom transfer: an invigorating approach to free-radical reactions. Curr. Opin. Chem. Biol. 49, 16–24 (2019).

    CAS 

    Google Scholar
     

  • Van Stappen, C. et al. Designing artificial metalloenzymes by tuning of the environment beyond the primary coordination sphere. Chem. Rev. 122, 11974–12045 (2022).


    Google Scholar
     

  • Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    CAS 

    Google Scholar
     

  • Emmanuel, M. A. et al. Photobiocatalytic strategies for organic synthesis. Chem. Rev. 123, 5459–5520 (2023).

    CAS 

    Google Scholar
     

  • Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Rui, J. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)-H azidation. Science 376, 869–874 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Zetzsche, L. E. et al. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation. Nature 603, 79–85 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. A light-driven enzymatic enantioselective radical acylation. Nature 625, 74–78 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Chen, R., Kayrouz, C. S., McAmis, E., Clark, D. S. & Hartwig, J. F. Carbonic anhydrase variants catalyze the reduction of dialkyl ketones with high enantioselectivity. Angew. Chem. Int. Ed. 63, e202407111 (2024).

    CAS 

    Google Scholar
     

  • Ji, P., Park, J., Gu, Y., Clark, D. S. & Hartwig, J. F. Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. Nat. Chem. 13, 312–318 (2021).

    CAS 

    Google Scholar
     

  • Zhang, X. et al. Repurposing myoglobin into an abiological asymmetric ketoreductase. Chem 10, 2577–2589 (2024).

    CAS 

    Google Scholar
     

  • Wan, Z. et al. Stereoconvergent reduction of alkenes using a repurposed iron-based dioxygenase. Nat. Synth. https://doi.org/10.1038/s44160-025-00788-6 (2025).


    Google Scholar
     

  • Li, J., Kumar, A. & Lewis, J. C. Non-native intramolecular radical cyclization catalyzed by a B12-dependent enzyme. Angew. Chem. Int. Ed. 62, e202312893 (2023).

    CAS 

    Google Scholar
     

  • Wang, B. et al. Repurposing iron- and 2-oxoglutarate-dependent oxygenases to catalyze olefin hydration. Angew. Chem. Int. Ed. 62, e202311099 (2023).

    CAS 

    Google Scholar
     

  • Chen, D. et al. An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway. Nat. Chem. 16, 1656–1664 (2024).

    CAS 

    Google Scholar
     

  • Fansher, D. J., Besna, J. N., Fendri, A. & Pelletier, J. N. Choose your own adventure: a comprehensive database of reactions catalyzed by cytochrome P450 BM3 variants. ACS Catal. 14, 5560–5592 (2024).

    CAS 

    Google Scholar
     

  • Kim, D., Rahaman, S. M. W., Mercado, B. Q., Poli, R. & Holland, P. L. Roles of iron complexes in catalytic radical alkene cross-coupling: a computational and mechanistic study. J. Am. Chem. Soc. 141, 7473–7485 (2019).

    CAS 

    Google Scholar
     

  • Li, H. Y., Darwish, K. & Poulos, T. L. Characterization of recombinant Bacillus megaterium cytochrome P-450 BM-3 and its two functional domains. J. Biol. Chem. 266, 11909–11914 (1991).

    CAS 

    Google Scholar
     

  • Gröger, H., Gallou, F. & Lipshutz, B. H. Where chemocatalysis meets biocatalysis: in water. Chem. Rev. 123, 5262–5296 (2023).


    Google Scholar
     

  • Andersson, M. P., Gallou, F., Klumphu, P., Takale, B. S. & Lipshutz, B. H. Structure of nanoparticles derived from designer surfactant TPGS-750-M in water, as used in organic synthesis. Chem. Eur. J. 24, 6778–6786 (2018).

    CAS 

    Google Scholar
     

  • Turner, O. J., Murphy, J. A., Hirst, D. J. & Talbot, E. P. A. Hydrogen atom transfer-mediated cyclisations of nitriles. Chem. Eur. J. 24, 18658–18662 (2018).

    CAS 

    Google Scholar
     

  • Saladrigas, M., Loren, G., Bonjoch, J. & Bradshaw, B. Hydrogen atom transfer (HAT)-triggered iron-catalyzed intra- and intermolecular coupling of alkenes with hydrazones: access to complex amines. ACS Catal. 8, 11699–11703 (2018).

    CAS 

    Google Scholar
     

  • Drienovská, I., Mayer, C., Dulson, C. & Roelfes, G. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat. Chem. 10, 946–952 (2018).


    Google Scholar
     

  • Kato, S., Abe, M., Gröger, H. & Hayashi, T. Reconstitution of myoglobin with iron porphycene generates an artificial aldoxime dehydratase with expanded catalytic activities. ACS Catal. 14, 13081–13087 (2024).

    CAS 

    Google Scholar
     

  • Chen, K., Wang, Z., Ding, K., Chen, Y. & Asano, Y. Recent progress on discovery and research of aldoxime dehydratases. Green Synth. Catal. 2, 179–186 (2021).


    Google Scholar
     

  • Mohamed, H., Ghith, A. & Bell, S. G. The binding of nitrogen-donor ligands to the ferric and ferrous forms of cytochrome P450 enzymes. J. Inorg. Biochem. 242, 112168 (2023).

    CAS 

    Google Scholar
     

  • Omura, T. & Sato, R. The carbon monoxide-binding pigment of liver microsomes: I. Evidence for its hemoprotein nature. J. Biol. Chem. 239, 2370–2378 (1964).

    CAS 

    Google Scholar
     

  • Zheng, J., Kwak, K., Xie, J. & Fayer, M. D. Ultrafast carbon-carbon single-bond rotational isomerization in room-temperature solution. Science 313, 1951–1955 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    CAS 

    Google Scholar
     

  • Koo, L. S., Immoos, C. E., Cohen, M. S., Farmer, P. J. & Ortiz de Montellano, P. R. Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119. J. Am. Chem. Soc. 124, 5684–5691 (2002).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments