Saturday, April 12, 2025
No menu items!
HomeNatureReprogramming site-specific retrotransposon activity to new DNA sites

Reprogramming site-specific retrotransposon activity to new DNA sites

  • Goodier, J. L. & Kazazian, H. H. Jr Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135, 23–35 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kojima, K. K., Seto, Y. & Fujiwara, H. The wide distribution and change of target specificity of R2 non-LTR retrotransposons in animals. PLoS ONE 11, e0163496 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eickbush, D. G., Burke, W. D. & Eickbush, T. H. Evolution of the R2 retrotransposon ribozyme and its self-cleavage site. PLoS ONE 8, e66441 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, K. K. & Fujiwara, H. Long-term inheritance of the 28S rDNA-specific retrotransposon R2. Mol. Biol. Evol. 22, 2157–2165 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Fujiwara, H. et al. Introns and their flanking sequences of Bombyx mori rDNA. Nucleic Acids Res. 12, 6861–6869 (1984).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roiha, H., Miller, J. R., Woods, L. C. & Glover, D. M. Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster. Nature 290, 749–754 (1981).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kojima, K. K. & Fujiwara, H. Evolution of target specificity in R1 clade non-LTR retrotransposons. Mol. Biol. Evol. 20, 351–361 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Burke, W. D., Malik, H. S., Lathe, W. C. III & Eickbush, T. H. Are retrotransposons long-term hitchhikers? Nature 392, 141–142 (1998).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Malik, H. S., Burke, W. D. & Eickbush, T. H. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16, 793–805 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Eickbush, T. H. in Mobile DNA II (eds Craig, N. L. et al.) 813–835 (ASM, 2002).

  • Fujiwara, H. in Mobile DNA III (eds Chandler, M. et al.) 1147–1163 (ASM, 2015).

  • Eickbush, T. H. & Eickbush, D. G. Integration, regulation, and long-term stability of R2 retrotransposons. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.mdna3-0011-2014 (2015).

  • Christensen, S. M. & Eickbush, T. H. R2 target-primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA. Mol. Cell. Biol. 25, 6617–6628 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, J. S. Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent developments, and unanswered questions. Mob. DNA 1, 15 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci. Nat. Biotechnol. 43, 42–51 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Kuroki-Kami, A. et al. Targeted gene knockin in zebrafish using the 28S rDNA-specific non-LTR-retrotransposon R2Ol. Mob. DNA 10, 23 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, Y., Nichuguti, N., Kuroki-Kami, A. & Fujiwara, H. Sequence-specific retrotransposition of 28S rDNA-specific LINE R2Ol in human cells. RNA 25, 1432–1438 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. All-RNA-mediated targeted gene integration in mammalian cells with rationally engineered R2 retrotransposons. Cell 187, 4674–4689 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wilkinson, M. E., Frangieh, C. J., Macrae, R. K. & Zhang, F. Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription. Science 380, 301–308 (2023).

  • Luchetti, A. & Mantovani, B. Non-LTR R2 element evolutionary patterns: phylogenetic incongruences, rapid radiation and the maintenance of multiple lineages. PLoS ONE 8, e57076 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, K. K. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 94, 233–252 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J., Malik, H. S. & Eickbush, T. H. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc. Natl Acad. Sci. USA 96, 7847–7852 (1999).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bibillo, A. & Eickbush, T. H. End-to-end template jumping by the reverse transcriptase encoded by the R2 retrotransposon. J. Biol. Chem. 279, 14945–14953 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Ruminski, D. J., Webb, C.-H. T., Riccitelli, N. J. & Lupták, A. Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. J. Biol. Chem. 286, 41286–41295 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, X. et al. Precise genome editing without exogenous donor DNA via retron editing system in human cells. Protein Cell 12, 899–902 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, B., Chen, S.-A. A., Lee, J. & Fraser, H. B. Bacterial retrons enable precise gene editing in human cells. CRISPR J. 5, 31–39 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borel, F., Lacroix, F. B. & Margolis, R. L. Prolonged arrest of mammalian cells at the G1/S boundary results in permanent S phase stasis. J. Cell Sci. 115, 2829–2838 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, C. et al. Template-jumping prime editing enables large insertion and exon rewriting in vivo. Nat. Commun. 14, 3369 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods 19, 331–340 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).

  • de Rocquigny, H. et al. The zinc fingers of HIV nucleocapsid protein NCp7 direct interactions with the viral regulatory protein Vpr. J. Biol. Chem. 272, 30753–30759 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Kojima, K. K. & Fujiwara, H. An extraordinary retrotransposon family encoding dual endonucleases. Genome Res. 15, 1106–1117 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat. Commun. 13, 6968 (2022).

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodcroft, B. J., Boyd, J. A. & Tyson, G. W. OrfM: a fast open reading frame predictor for metagenomic data. Bioinformatics 32, 2702–2703 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–D268 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sigrist, C. J. A. et al. New and continuing developments at PROSITE. Nucleic Acids Res. 41, D344–D347 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kalvari, I. et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 49, D192–D200 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steenwyk, J. L., Buida, T. J. III, Li, Y., Shen, X.-X. & Rokas, A. ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinformatics 69, e96 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Valdar, W. S. J. Scoring residue conservation. Proteins 48, 227–241 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Killick, R. & Eckley, I. A. changepoint: an R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).

    Article 

    Google Scholar
     

  • Hu, J. et al. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification–mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853–871 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments