Litterst, M., Butkevich, A. A. & Kemerink, M. Inconclusive proof of ferroelectricity in peptide-VDF ribbons. Nature https://doi.org/10.1038/s41586-025-09314-2 (2025).
Yang, Y. et al. Peptide programming of supramolecular vinylidene fluoride ferroelectric phases. Nature 634, 833–841 (2024).
Abdolmaleki, H., Haugen, A. B., Buhl, K. B., Daasbjerg, K. & Agarwala, S. Interfacial engineering of PVDF‐TrFE toward higher piezoelectric, ferroelectric, and dielectric performance for sensing and energy harvesting applications. Adv. Sci. 10, e2205942 (2023).
Tajitsu, Y., Masuda, T. & Furukawa, T. Switching phenomena in vinylidene fluoride/trifluoroethylene copolymers near the Curie point. Jpn J. Appl. Phys. 26, 1749–1753 (1987).
Sharma, P., Reece, T. J., Ducharme, S. & Gruverman, A. High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers. Nano Lett. 11, 1970–1975 (2011).
Balke, N. et al. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS Nano 9, 6484–6492 (2015).
Furukawa, T., Date, M., Fukada, E., Tajitsu, Y. & Chiba, A. Ferroelectric behavior in the copolymer of vinylidenefluoride and trifluoroethylene. Jpn J. Appl. Phys. 19, L109–L112 (1980).
Mabuchi, Y., Nakajima, T., Furukawa, T. & Okamura, S. Electric-field-induced polarization enhancement of vinylidene fluoride/trifluoroethylene copolymer ultrathin films. Appl. Phys. Express 4, 071501 (2011).
Naber, R. C. G. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater. 4, 243–248 (2005).
Revenant, C., Toinet, S., Lawrence Bright, E. & Benwadih, M. The longitudinal and transverse piezoelectric effects of the ferroelectric polymer P(VDF‐TrFE). Macromol. Mater. Eng. 310, 2400420 (2025).
García-Iglesias, M. et al. A versatile method for the preparation of ferroelectric supramolecular materials via radical end-functionalization of vinylidene fluoride oligomers. J. Am. Chem. Soc. 138, 6217–6223 (2016).