Saturday, February 22, 2025
No menu items!
HomeNatureReply to: Atlantic oceanic droughts do not threaten Asian water tower

Reply to: Atlantic oceanic droughts do not threaten Asian water tower

  • Zhao, Y., Xu, C., Yu, X., Liu, Y. & Ji, X. Atlantic oceanic droughts do not threaten Asian water tower. Nature https://doi.org/10.1038/s41586-024-08357-1 (2025).

  • Zhang, Q. et al. Oceanic climate changes threaten the sustainability of Asia’s water tower. Nature 615, 87–93 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, B. et al. Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season. Clim. Dyn. 53, 6891–6907 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Ma, Y. et al. Spatially coherent clusters of summer precipitation extremes in the Tibetan Plateau: where is the moisture from? Atmos. Res. 237, 104841 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Li, Y. et al. Atmospheric water transport to the endorheic Tibetan Plateau and its effect on the hydrological status in the region. J. Geophys. Res. Atmos. 124, 12864–12881 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Li, Y. et al. Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau. Hydrol. Earth Syst. Sci. 26, 6413–6426 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Pan, C. et al. Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Clim. Dyn. 52, 181–196 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Wang, W. et al. Continental water vapor dominantly impacts precipitation during the snow season on the northeastern Tibetan Plateau. J. Climate 35, 3819–3831 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Liu, X. et al. Large‐scale dynamics and moisture sources of the precipitation over the western Tibetan Plateau in boreal winter. J. Geophys. Res. Atmos. 125, e2019JD032133 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ordoñez, P. et al. Climatological moisture sources for the Western North American Monsoon through a Lagrangian approach: their influence on precipitation intensity. Earth Syst. Dyn. 10, 59–72 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Stohl, A. & James, P. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeorol. 5, 656–678 (2004).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fernández-Alvarez, J. C. et al. Projected changes in atmospheric moisture transport contributions associated with climate warming in the North Atlantic. Nat. Commun. 14, 6476 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sun, B. & Wang, H. Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J. Clim. 27, 2457–2474 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Mott, R., Daniels, M. & Lehning, M. Atmospheric flow development and associated changes in turbulent sensible heat flux over a patchy mountain snow cover. J. Hydrometeorol. 16, 1315–1340 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sauter, T. & Galos, S. P. Effects of local advection on the spatial sensible heat flux variation on a mountain glacier. Cryosphere 10, 2887–2905 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • JerseyShenBNU. JerseyShenBNU/Reply_to_Zhao: Reply to Zhao. Zenodo https://doi.org/10.5281/zenodo.10582465 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments