Zhang, H. & Wang, S. Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr. Opin. Plant Biol. 16, 188–195 (2013).
Saile, S. C. & El Kasmi, F. Small family, big impact: RNL helper NLRs and their importance in plant innate immunity. PLoS Pathog. 19, e1011315 (2023).
Balint-Kurti, P. The plant hypersensitive response: concepts, control and consequences. Mol. Plant Pathol. 20, 1163–1178 (2019).
Segretin, M. E. et al. Single amino acid mutations in the potato immune receptor R3a expand response to Phytophthora effectors. Mol. Plant Microbe Interact. 27, 624–637 (2014).
Giannakopoulou, A. et al. Tomato I2 immune receptor can be engineered to confer partial resistance to the oomycete Phytophthora infestans in addition to the fungus Fusarium oxysporum. Mol. Plant Microbe Interact. 28, 1316–1329 (2015).
De la Concepcion, J. C. et al. Protein engineering expands the effector recognition profile of a rice NLR immune receptor. eLife 8, e47713 (2019).
Cesari, S. et al. New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain. Nat. Commun. 13, 1524 (2022).
Farnham, G. & Baulcombe, D. C. Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proc. Natl Acad. Sci. USA 103, 18828–18833 (2006).
Harris, C. J., Slootweg, E. J., Goverse, A. & Baulcombe, D. C. Stepwise artificial evolution of a plant disease resistance gene. Proc. Natl Acad. Sci. USA 110, 21189–21194 (2013).
Chapman, S. et al. Detection of the virulent form of AVR3a from Phytophthora infestans following artificial evolution of potato resistance gene R3a. PLoS ONE 9, e110158 (2014).
Zhang, X. et al. The synthetic NLR RGA5HMA5 requires multiple interfaces within and outside the integrated domain for effector recognition. Nat. Commun. 15, 1104 (2024).
Liu, Y. et al. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc. Natl Acad. Sci. USA 118, e2110751118 (2021).
Maidment, J. H. R. et al. Effector target-guided engineering of an integrated domain expands the disease resistance profile of a rice NLR immune receptor. eLife 12, e81123 (2023).
Bentham, A. R. et al. Allelic compatibility in plant immune receptors facilitates engineering of new effector recognition specificities. Plant Cell 35, 3809–3827 (2023).
Zdrzałek, R. et al. Bioengineering a plant NLR immune receptor with a robust binding interface toward a conserved fungal pathogen effector. Proc. Natl Acad. Sci. USA 121, e2402872121 (2024).
Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A. & Kamoun, S. NLR immune receptor–nanobody fusions confer plant disease resistance. Science 379, 934–939 (2023).
Kim, S. H., Qi, D., Ashfield, T., Helm, M. & Innes, R. W. Using decoys to expand the recognition specificity of a plant disease resistance protein. Science 351, 684–687 (2016).
Adachi, H. et al. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8, e49956 (2019).
Wang, J., Han, M. & Liu, Y. Diversity, structure and function of the coiled-coil domains of plant NLR immune receptors. J. Integr. Plant Biol. 63, 283–296 (2021).
Wang, J. et al. Plant NLR immune receptor Tm-22 activation requires NB-ARC domain-mediated self-association of CC domain. PLoS Pathog. 16, e1008475 (2020).
Collier, S. M., Hamel, L. P. & Moffett, P. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol. Plant Microbe Interact. 24, 918–931 (2011).
Maekawa, T. et al. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9, 187–199 (2011).
Bi, G. et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528–3541 (2021).
Jacob, P. et al. Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420–425 (2021).
Förderer, A. et al. A wheat resistosome defines common principles of immune receptor channels. Nature 610, 532–539 (2022).
Liu, F. et al. Activation of the helper NRC4 immune receptor forms a hexameric resistosome. Cell 187, 4877–4889 (2024).
Kawano, Y. et al. Palmitoylation-dependent membrane localization of the rice resistance protein Pit is critical for the activation of the small GTPase OsRac1. J. Biol. Chem. 289, 19079–19088 (2014).
Chen, T. et al. Antiviral resistance protein Tm-22 functions on the plasma membrane. Plant Physiol. 173, 2399–2410 (2017).
Wang, J. et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870 (2019).
Bieri, S. et al. RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16, 3480–3495 (2004).
Bendahmane, A., Farnham, G., Moffett, P. & Baulcombe, D. C. Constitutive gain-of-function mutants in a nucleotide binding site–leucine rich repeat protein encoded at the Rx locus of potato. Plant J. 32, 195–204 (2002).
Roberts, M., Tang, S., Stallmann, A., Dangl, J. L. & Bonardi, V. Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor. PLoS Genet. 9, e1003465 (2013).
Rairdan, G. J. & Moffett, P. Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18, 2082–2093 (2006).
Rodamilans, B., Shan, H., Pasin, F. & García, J. A. Plant viral proteases: beyond the role of peptide cutters. Front. Plant Sci. 9, 666 (2018).
Yatsuda, A. P. et al. Identification of secreted cysteine proteases from the parasitic nematode Haemonchus contortus detected by biotinylated inhibitors. Infect. Immunity 74, 1989–1993 (2006).
Figaj, D., Ambroziak, P., Przepiora, T. & Skorko-Glonek, J. The role of proteases in the virulence of plant pathogenic bacteria. Int. J. Mol. Sci. 20, 672 (2019).
De Wit, P., Testa, A. C. & Oliver, R. P. Fungal plant pathogenesis mediated by effectors. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0021-2016 (2016).
Furch, A. C., van Bel, A. J. & Will, T. Aphid salivary proteases are capable of degrading sieve-tube proteins. J. Exp. Bot. 66, 533–539 (2015).
Zhang, Q. et al. Two Phytophthora parasitica cysteine protease genes, PpCys44 and PpCys45, trigger cell death in various Nicotiana spp. and act as virulence factors. Mol. Plant Pathol. 21, 541–554 (2020).
Qin, L., Ding, S. & He, Z. Compositional biases and evolution of the largest plant RNA virus order Patatavirales. Int. J. Biol. Macromol. 240, 124403 (2023).
Revers, F. & García, J. A. Molecular biology of potyviruses. Adv. Virus Res. 92, 101–199 (2015).
Palani, S. N., Sankaranarayanan, R. & Tennyson, J. Comparative study of potyvirid NIa proteases and their cleavage sites. Arch. Virol. 166, 1141–1149 (2021).
Adams, M. J., Antoniw, J. F. & Beaudoin, F. Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol. Plant Pathol. 6, 471–487 (2005).
Merits, A. et al. Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J. Gen. Virol. 83, 1211–1221 (2002).
Zhang, H., Zhao, J., Liu, S., Zhang, D. P. & Liu, Y. Tm-22 confers different resistance responses against tobacco mosaic virus dependent on its expression level. Mol. Plant 6, 971–974 (2013).
Zhu, M. et al. The intracellular immune receptor Sw-5b confers broad-spectrum resistance to tospoviruses through recognition of a conserved 21-amino acid viral effector epitope. Plant Cell 29, 2214–2232 (2017).
Slootweg, E. et al. Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. Plant Cell 22, 4195–4215 (2010).
Wu, C. H. et al. NLR network mediates immunity to diverse plant pathogens. Proc. Natl Acad. Sci. USA 114, 8113–8118 (2017).
Case, A. J. et al. Mapping stripe rust resistance in a BrundageXCoda winter wheat recombinant inbred line population. PLoS ONE 9, e91758 (2014).
Li, B., Sun, C., Li, J. & Gao, C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat. Rev. Genet. 25, 603–622 (2024).
Ge, X. et al. Efficient genotype-independent cotton genetic transformation and genome editing. J. Integr. Plant Biol. 65, 907–917 (2023).
Yin, J. et al. A cell wall-localized NLR confers resistance to soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. Mol. Plant 14, 1881–1900 (2021).