Thursday, January 22, 2026
No menu items!
HomeNatureRelatively warm deep-water formation persisted in the Last Glacial Maximum

Relatively warm deep-water formation persisted in the Last Glacial Maximum

  • Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kageyama, M. et al. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim. Past 17, 1065–1089 (2021).

    Article 

    Google Scholar
     

  • Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).

  • Oppo, D. W. et al. Data constraints on glacial atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol. 33, 1013–1034 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Blaser, P. et al. Prevalent North Atlantic Deep Water during the Last Glacial Maximum and Heinrich Stadial 1. Nat. Geosci. 18, 410–416 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Locarnini, R. A. et al. World Ocean Atlas 2023. Volume 1: Temperature (NOAA, 2024).

  • Reagan, J. R. et al. World Ocean Atlas 2023. Volume 2: Salinity (NOAA, 2024).

  • Talley, L. D., Pickard, G. L., Emery, W. J. & Swift, J. H. in Descriptive Physical Oceanography 6th edn (eds Talley, L. D. et al.) 245–301 (Academic Press, 2011).

  • Sherriff-Tadano, S., Abe-Ouchi, A., Yoshimori, M., Oka, A. & Chan, W.-L. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change. Clim. Dyn. 50, 2881–2903 (2018).

    Article 

    Google Scholar
     

  • Klockmann, M., Mikolajewicz, U. & Marotzke, J. The effect of greenhouse gas concentrations and ice sheets on the glacial AMOC in a coupled climate model. Clim. Past 12, 1829–1846 (2016).

    Article 

    Google Scholar
     

  • Oka, A., Hasumi, H. & Abe-Ouchi, A. The thermal threshold of the Atlantic meridional overturning circulation and its control by wind stress forcing during glacial climate. Geophys. Res. Lett. 39, L09709 (2012).

  • Pöppelmeier, F., Gutjahr, M., Blaser, P., Keigwin, L. D. & Lippold, J. Origin of abyssal NW Atlantic water masses since the Last Glacial Maximum. Paleoceanogr. Paleoclimatology 33, 530–543 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wharton, J. H. et al. Deeper and stronger North Atlantic Gyre during the Last Glacial Maximum. Nature https://doi.org/10.1038/s41586-024-07655-y (2024).

  • Keigwin, L. D. & Swift, S. A. Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic. Proc. Natl Acad. Sci. USA 114, 2831–2835 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wunsch, C. Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios. Clim. Past 12, 1281–1296 (2016).

    Article 

    Google Scholar
     

  • Miller, M. D., Simons, M., Adkins, J. F. & Minson, S. E. The information content of pore fluid δ18O and [Cl]. J. Phys. Oceanogr. 45, 2070–2094 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Petit, T., Lozier, M. S., Josey, S. A. & Cunningham, S. A. Atlantic deep water formation occurs primarily in the Iceland Basin and Irminger Sea by local buoyancy forcing. Geophys. Res. Lett. 47, e2020GL091028 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Martin, W. R. & Sayles, F. L. CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic. Geochim. Cosmochim. Acta 60, 243–263 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weldeab, S., Arce, A. & Kasten, S. Mg/Ca-ΔCO32−porewater–temperature calibration for Globobulimina spp.: a sensitive paleothermometer for deep-sea temperature reconstruction. Earth Planet. Sci. Lett. 438, 95–102 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marchitto, T. M., Bryan, S. P., Doss, W., McCulloch, M. T. & Montagna, P. A simple biomineralization model to explain Li, Mg, and Sr incorporation into aragonitic foraminifera and corals. Earth Planet. Sci. Lett. 481, 20–29 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cronin, T. M., Dwyer, G. S., Baker, P. A., Rodriguez-Lazaro, J. & DeMartino, D. M. Orbital and suborbital variability in North Atlantic bottom water temperature obtained from deep-sea ostracod Mg/Ca ratios. Palaeogeogr. Palaeoclimatol. Palaeoecol. 162, 45–57 (2000).

    Article 

    Google Scholar
     

  • Dwyer, G. S., Cronin, T. M., Baker, P. A. & Rodriguez-Lazaro, J. Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios. Geochem. Geophys. Geosyst. 1, 1028 (2000).

  • Yasuhara, M. et al. North Atlantic Intermediate Water variability over the past 20,000 years. Geology 47, 659–663 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33, L12604 (2006).

  • Rohling, E. J. Progress in paleosalinity: overview and presentation of a new approach. Paleoceanography 22, PA3215 (2007).

  • Zhang, J. et al. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation. Proc. Natl Acad. Sci. USA 114, 11075–11080 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirschi, J. J.-M. et al. The Atlantic Meridional Overturning Circulation in high-resolution models. J. Geophys. Res. Oceans 125, e2019JC015522 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Waelbroeck, C. et al. Constraints on surface seawater oxygen isotope change between the Last Glacial Maximum and the Late Holocene. Quat. Sci. Rev. 105, 102–111 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Benetti, M., Reverdin, G., Aloisi, G. & Sveinbjörnsdóttir, Á. Stable isotopes in surface waters of the Atlantic Ocean: indicators of ocean–atmosphere water fluxes and oceanic mixing processes. J. Geophys. Res. Oceans 122, 4723–4742 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Warken, S. F. et al. Caribbean hydroclimate and vegetation history across the last glacial period. Quat. Sci. Rev. 218, 75–90 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dyn. 37, 775–802 (2011).

    Article 

    Google Scholar
     

  • Cronin, T. M. et al. Deep Arctic Ocean warming during the last glacial cycle. Nat. Geosci. 5, 631–634 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bauch, H. A. et al. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic Seas over the last 30,000 yr. Quat. Sci. Rev. 20, 659–678 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Thornalley, D. J. R., Elderfield, H. & McCave, I. N. Reconstructing North Atlantic deglacial surface hydrography and its link to the Atlantic overturning circulation. Glob. Planet. Change 79, 163–175 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Alley, R. B. & Clark, P. U. The deglaciation of the Northern Hemisphere: a global perspective. Annu. Rev. Earth Planet. Sci. 27, 149–182 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Winton, M. The effect of cold climate upon North Atlantic Deep Water formation in a simple ocean–atmosphere model. J. Clim. 10, 37–51 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Hanawa, K. & D. Talley, L. in International Geophysics Vol. 77 (eds Siedler, G. et al.) 373–386 (Academic Press, 2001).

  • Seltzer, A. M., Davidson, P. W., Shackleton, S. A., Nicholson, D. P. & Khatiwala, S. Global ocean cooling of 2.3 °C during the Last Glacial Maximum. Geophys. Res. Lett. 51, e2024GL108866 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, S. & Knorr, G. A systematic role for extreme ocean–atmosphere oscillations in the development of glacial conditions since the Mid Pleistocene transition. Paleoceanogr. Paleoclimatology 38, e2023PA004690 (2023).

    Article 

    Google Scholar
     

  • Våge, K., Papritz, L., Håvik, L., Spall, M. A. & Moore, G. W. K. Ocean convection linked to the recent ice edge retreat along east Greenland. Nat. Commun. 9, 1287 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lique, C. & Thomas, M. D. Latitudinal shift of the Atlantic Meridional Overturning Circulation source regions under a warming climate. Nat. Clim. Change 8, 1013–1020 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Schlitzer, R. Ocean Data View: EPIC3 (ODV, 2022).

  • Marchitto, T. M. et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera. Geochim. Cosmochim. Acta 130, 1–11 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lauvset, S. K. et al. GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 14, 5543–5572 (2022).

    Article 
    ADS 

    Google Scholar
     

  • McDougall, T. J. & Barker, P. M. Getting started with TEOS-10 and the Gibbs seawater (GSW) oceanographic toolbox. Scoriapso WG 127, 1–28 (2011).


    Google Scholar
     

  • Dalton, A. S. et al. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quat. Sci. Rev. 234, 106223 (2020).

    Article 

    Google Scholar
     

  • Hughes, A. L. C., Gyllencreutz, R., Lohne, ØS., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).

    Article 

    Google Scholar
     

  • Thornalley, D. J. R., Elderfield, H. & McCave, I. N. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years. Paleoceanography 25, PA1211 (2010).

  • Barker, S., Kiefer, T. & Elderfield, H. Temporal changes in North Atlantic circulation constrained by planktonic foraminiferal shell weights. Paleoceanography 19, PA3008 (2004).

  • Boyle, E. & Rosenthal, Y. in The South Atlantic: Present and Past Circulation (eds Wefer, G. et al.) 423–443 (Springer, 1996).

  • Marchitto, T. M. Precise multielemental ratios in small foraminiferal samples determined by sector field ICP-MS. Geochem. Geophys. Geosyst. 7, Q05P13 (2006).

  • Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

  • Elderfield, H., Yu, J., Anand, P., Kiefer, T. & Nyland, B. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis. Earth Planet. Sci. Lett. 250, 633–649 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stirpe, C. R. et al. The Mg/Ca proxy for temperature: a Uvigerina core-top study in the Southwest Pacific. Geochim. Cosmochim. Acta 309, 299–312 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bryan, S. P. & Marchitto, T. M. Mg/Ca–temperature proxy in benthic foraminifera: new calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 23, PA2220 (2008).

  • Hasenfratz, A. P. et al. Mg/Ca-temperature calibration for the benthic foraminifera Melonis barleeanum and Melonis pompilioides. Geochim. Cosmochim. Acta 217, 365–383 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grunert, P. et al. Mg/Ca-temperature calibration for costate Bulimina species (B. costata, B. inflata, B. mexicana): a paleothermometer for hypoxic environments. Geochim. Cosmochim. Acta 220, 36–54 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Quillmann, U., Marchitto, T. M., Jennings, A. E., Andrews, J. T. & Friestad, B. F. Cooling and freshening at 8.2 ka on the NW Iceland Shelf recorded in paired δ18O and Mg/Ca measurements of the benthic foraminifer Cibicides lobatulus. Quat. Res. 78, 528–539 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Skirbekk, K. et al. Benthic foraminiferal growth seasons implied from Mg/Ca–temperature correlations for three Arctic species. Geochem. Geophys. Geosyst. 17, 4684–4704 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kristjánsdóttir, G. B., Lea, D. W., Jennings, A. E., Pak, D. K. & Belanger, C. New spatial Mg/Ca-temperature calibrations for three Arctic, benthic foraminifera and reconstruction of north Iceland shelf temperature for the past 4000 years. Geochem. Geophys. Geosyst. 8, Q03P21 (2007).

  • Yu, J., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 8, Q06016 (2007).

  • Bernasconi, S. M. et al. InterCarb: a community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochem. Geophys. Geosyst. 22, e2020GC009588 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernasconi, S. M. et al. Background effects on Faraday collectors in gas-source mass spectrometry and implications for clumped isotope measurements. Rapid Commun. Mass Spectrom. 27, 603–612 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meckler, A. N., Ziegler, M., Millán, M. I., Breitenbach, S. F. M. & Bernasconi, S. M. Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. Rapid Commun. Mass Spectrom. 28, 1705–1715 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meinicke, N., Reimi, M. A., Ravelo, A. C. & Meckler, A. N. Coupled Mg/Ca and clumped isotope measurements indicate lack of substantial mixed layer cooling in the Western Pacific Warm Pool during the last 5 million years. Paleoceanogr. Paleoclimatol. 36, e2020PA004115 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Schrag, D. P. et al. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat. Sci. Rev. 21, 331–342 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Clark, P. U. et al. Global mean sea level over the past 4.5 million years. Science 390, eadv8389 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duplessy, J.-C., Labeyrie, L. & Waelbroeck, C. Constraints on the ocean oxygen isotopic enrichment between the Last Glacial Maximum and the Holocene: paleoceanographic implications. Quat. Sci. Rev. 21, 315–330 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

  • Rohling, E. J. & Bigg, G. R. Paleosalinity and δ18O: a critical assessment. J. Geophys. Res. Oceans 103, 1307–1318 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Valley, S. G., Lynch-Stieglitz, J. & Marchitto, T. M. Intermediate water circulation changes in the Florida Straits from a 35 ka record of Mg/Li-derived temperature and Cd/Ca-derived seawater cadmium. Earth Planet. Sci. Lett. 523, 115692 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Umling, N. E. et al. Atlantic circulation and ice sheet influences on upper South Atlantic temperatures during the last deglaciation. Paleoceanogr. Paleoclimatol. 34, 990–1005 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Oppo, D. W. et al. Deglacial temperature and carbonate saturation state variability in the tropical Atlantic at Antarctic Intermediate Water depths. Paleoceanogr. Paleoclimatol. 38, e2023PA004674 (2023).

    Article 

    Google Scholar
     

  • Ezat, M. M., Rasmussen, T. L. & Groeneveld, J. Reconstruction of hydrographic changes in the southern Norwegian Sea during the past 135 kyr and the impact of different foraminiferal Mg/Ca cleaning protocols. Geochem. Geophys. Geosyst. 17, 3420–3436 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. USA 108, 13415–13419 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skinner, L. C., Shackleton, N. J. & Elderfield, H. Millennial-scale variability of deep-water temperature and δ18Odw indicating deep-water source variations in the Northeast Atlantic, 0–34 cal. ka BP. Geochem. Geophys. Geosyst. 4, 1098 (2003).

  • Hasenfratz, A. P. et al. The residence time of Southern Ocean surface waters and the 100,000-year ice age cycle. Science 363, 1080–1084 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J. & Elderfield, H. Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 258, 73–86 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Doss, W., Marchitto, T. M., Eagle, R., Rashid, H. & Tripati, A. Deconvolving the saturation state and temperature controls on benthic foraminiferal Li/Ca, based on downcore paired B/Ca measurements and coretop compilation. Geochim. Cosmochim. Acta 236, 297–314 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Humphreys, M. P. et al. PyCO2SYS: marine carbonate system calculations in Python. Zenodo https://doi.org/10.5281/zenodo.16420947 (2025).

  • Wadley, M. R., Bigg, G. R., Rohling, E. J. & Payne, A. J. On modelling present-day and last glacial maximum oceanic δ18O distributions. Glob. Planet. Change 32, 89–109 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Brennan, C. E., Weaver, A. J., Eby, M. & Meissner, K. J. Modelling oxygen isotopes in the University of Victoria Earth system climate model for pre-industrial and Last Glacial Maximum conditions. Atmos. Ocean 50, 447–465 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Werner, M. et al. Glacial–interglacial changes in H218O, HDO and deuterium excess—results from the fully coupled ECHAM5/MPI-OM Earth system model. Geosci. Model Dev. 9, 647–670 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gu, S. et al. Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM. Earth Planet. Sci. Lett. 541, 116294 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Caley, T., Roche, D. M., Waelbroeck, C. & Michel, E. Oxygen stable isotopes during the Last Glacial Maximum climate: perspectives from data–model (iLOVECLIM) comparison. Clim. Past 10, 1939–1955 (2014).

    Article 

    Google Scholar
     

  • Bemis, B. E., Spero, H. J., Bijma, J. & Lea, D. W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13, 150–160 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Nyland, B. F., Jansen, E., Elderfield, H. & Andersson, C. Neogloboquadrina pachyderma (dex. and sin.) Mg/Ca and δ18O records from the Norwegian Sea. Geochem. Geophys. Geosyst. 7, Q10P17 (2006).

  • Kim, S.-T. & O’Neil, J. R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 61, 3461–3475 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gray, W. R. & Evans, D. Nonthermal influences on Mg/Ca in planktonic foraminifera: a review of culture studies and application to the Last Glacial Maximum. Paleoceanogr. Paleoclimatol. 34, 306–315 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hönisch, B. & Hemming, N. G. Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet. Sci. Lett. 236, 305–314 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Felden, J. et al. PANGAEA – data publisher for earth & environmental science. Sci. Data 10, 347 (2023).

  • Wharton, J. et al. Mid-to-late Holocene and LGM multiproxy temperature, stable isotope, and seawater δ18O data from the North Atlantic [dataset bundled publication]. PANGAEA https://doi.org/10.1594/PANGAEA.988210 (2026).

  • Wharton, J. H. Relatively warm deep water formation persisted in the Last Glacial Maximum (python script). Zenodo https://doi.org/10.5281/zenodo.17733604 (2026).

  • The GEBCO_2014 Grid, version 20150318 (GEBCO Compilation Group, 2015).

  • Mawbey, E. M. et al. Mg/Ca–temperature calibration of polar benthic foraminifera species for reconstruction of bottom water temperatures on the Antarctic shelf. Geochim. Cosmochim. Acta 283, 54–66 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Barrientos, N. et al. Arctic Ocean benthic foraminifera Mg/Ca ratios and global Mg/Ca-temperature calibrations: new constraints at low temperatures. Geochim. Cosmochim. Acta 236, 240–259 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sessford, E. G. et al. High-resolution benthic Mg/Ca temperature record of the intermediate water in the Denmark Strait across D–O Stadial–Interstadial cycles. Paleoceanogr. Paleoclimatol. 33, 1169–1185 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lear, C. H., Rosenthal, Y. & Slowey, N. Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration. Geochim. Cosmochim. Acta 66, 3375–3387 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Elderfield, H. et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quat. Sci. Rev. 29, 160–169 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Daëron, M. & Gray, W. R. Revisiting oxygen-18 and clumped isotopes in planktic and benthic foraminifera. Paleoceanogr. Paleoclimatol. 38, e2023PA004660 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, N. T. et al. A unified clumped isotope thermometer calibration (0.5–1,100 °C) using carbonate-based standardization. Geophys. Res. Lett. 48, e2020GL092069 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Daëron, M. & Vermeesch, P. Omnivariant generalized least squares regression: theory, geochronological applications, and making the case for reconciled Δ47 calibrations. Chem. Geol. 647, 121881 (2024).

    Article 

    Google Scholar
     

  • Ezat, M. M. et al. Deep ocean storage of heat and CO2 in the Fram Strait, Arctic Ocean during the last glacial period. Paleoceanogr. Paleoclimatol. 36, e2021PA004216 (2021).

    Article 

    Google Scholar
     

  • El bani Altuna, N., Ezat, M. M., Greaves, M. & Rasmussen, T. L. Millennial-scale changes in bottom water temperature and water mass exchange through the Fram Strait 79°N, 63–13 ka. Paleoceanogr. Paleoclimatol. 36, e2020PA004061 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Thornalley, D. J. R. et al. A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period. Science 349, 706–710 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keigwin, L. D. Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography 19, PA4012 (2004).

  • Pöppelmeier, F. et al. Influence of ocean circulation and benthic exchange on deep Northwest Atlantic Nd isotope records during the past 30,000 years. Geochem. Geophys. Geosyst. 20, 4457–4469 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lippold, J. et al. Constraining the variability of the Atlantic Meridional Overturning Circulation during the Holocene. Geophys. Res. Lett. 46, 11338–11346 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lippold, J. et al. Does sedimentary 231Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation? Geophys. Res. Lett. 36, L12601 (2009).

  • Carlson, A. E. et al. Subtropical Atlantic salinity variability and Atlantic meridional circulation during the last deglaciation. Geology 36, 991–994 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hall, I. R., Evans, H. K. & Thornalley, D. J. R. Deep water flow speed and surface ocean changes in the subtropical North Atlantic during the last deglaciation. Glob. Planet. Change 79, 255–263 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Peck, V. L. et al. High resolution evidence for linkages between NW European ice sheet instability and Atlantic Meridional Overturning Circulation. Earth Planet. Sci. Lett. 243, 476–488 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Benway, H. M., McManus, J. F., Oppo, D. W. & Cullen, J. L. Hydrographic changes in the eastern subpolar North Atlantic during the last deglaciation. Quat. Sci. Rev. 29, 3336–3345 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Elderfield, H. & Ganssen, G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405, 442–445 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoff, U., Rasmussen, T. L., Stein, R., Ezat, M. M. & Fahl, K. Sea ice and millennial-scale climate variability in the Nordic Seas 90 kyr ago to present. Nat. Commun. 7, 12247 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments