Wednesday, July 16, 2025
No menu items!
HomeNatureRefractory solid condensation detected in an embedded protoplanetary disk

Refractory solid condensation detected in an embedded protoplanetary disk

  • McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lichtenberg, T., Schaefer, L. K., Nakajima, M. & Fischer, R. A. Geophysical evolution during rocky planet formation. Astron. Soc. Pac. Conf. Ser. 534, 907 (2023).

    ADS 

    Google Scholar
     

  • Antoniucci, S., Nisini, B., Giannini, T. & Lorenzetti, D. Accretion and ejection properties of embedded protostars: the case of HH26, HH34, and HH46 IRS. Astron. Astrophys. 479, 503–514 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Kristensen, L. E. & Dunham, M. M. Protostellar half-life: new methodology and estimates. Astron. Astrophys. 618, A158 (2018).

    ADS 

    Google Scholar
     

  • Sperling, T. et al. Probing the hidden atomic gas in Class I jets with SOFIA. Astron. Astrophys. 642, A216 (2020).

    CAS 

    Google Scholar
     

  • Carr, J. S. Infrared CO emission and disks around young stars. Astrophys. Space Sci. 224, 25–28 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Najita, J. R., Doppmann, G. W., Carr, J. S., Graham, J. R. & Eisner, J. A. High-resolution K-band spectroscopy of MWC 480 and V1331 Cyg. Astrophys. J. 691, 738–748 (2009).

    ADS 

    Google Scholar
     

  • Lyo, A. R. et al. Inner warm disk of ESO Hα 279a revealed by NA i and CO overtone emission lines. Astrophys. J. 844, 4 (2017).

    ADS 

    Google Scholar
     

  • D’Alessio, P., Calvet, N., Hartmann, L., Franco-Hernández, R. & Servín, H. Effects of dust growth and settling in T Tauri disks. Astrophys. J. 638, 314–335 (2006).

    ADS 

    Google Scholar
     

  • McClure, M. K. et al. Curved walls: grain growth, settling, and composition patterns in T Tauri disk dust sublimation fronts. Astrophys. J. 775, 114 (2013).

    ADS 

    Google Scholar
     

  • Cassen, P. Utilitarian models of the solar nebula. Icarus 112, 405–429 (1994).

    ADS 

    Google Scholar
     

  • Woitke, P., Drążkowska, J., Lammer, H., Kadam, K. & Marig, P. CAI formation in the early Solar System. Astron. Astrophys. 687, A65 (2024).

    CAS 

    Google Scholar
     

  • Do-Duy, T. et al. Crystalline silicate absorption at 11.1 μm: ubiquitous and abundant in embedded YSOs and the interstellar medium. Mon. Not. R. Astron. Soc. 493, 4463–4517 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Poteet, C. A. et al. A Spitzer infrared spectrograph detection of crystalline silicates in a protostellar envelope. Astrophys. J. Lett. 733, L32 (2011).

    ADS 

    Google Scholar
     

  • Davis, C. J., Stern, L., Ray, T. P. & Chrysostomou, A. Near-infrared Fabry-Perot imaging of Herbig-Haro energy sources: collimated, small-scale H2 jets and wide-angled winds. Astron. Astrophys. 382, 1021–1031 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Vleugels, C., McClure, M., Sturm, A. & Vlasblom, M. The H2 jet and disk wind of the Class I protostar HOPS 315. Astron. Astrophys. 695, A145 (2025).

    CAS 

    Google Scholar
     

  • Davis, C. J. et al. VLT integral field spectroscopy of embedded protostars: using near-infrared emission lines as tracers of accretion and outflow. Astron. Astrophys. 528, A3 (2011).


    Google Scholar
     

  • Harsono, D. et al. JWST peers into the Class I protostar TMC1A: atomic jet and spatially resolved dissociative shock region. Astrophys. J. Lett. 951, L32 (2023).

    ADS 

    Google Scholar
     

  • Tychoniec, Ł. et al. JWST Observations of Young protoStars (JOYS). Linked accretion and ejection in a Class I protobinary system. Astron. Astrophys. 687, A36 (2024).

    CAS 

    Google Scholar
     

  • Arulanantham, N. et al. JWST MIRI MRS images of disk winds, water, and CO in an edge-on protoplanetary disk. Astrophys. J. Lett. 965, L13 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Pascucci, I. et al. The nested morphology of disk winds from young stars revealed by JWST/NIRSpec observations. Nat. Astron. 9, 81–89 (2025).


    Google Scholar
     

  • Gail, H. P. & Sedlmayr, E. Mineral formation in stellar winds. I. Condensation sequence of silicate and iron grains in stationary oxygen rich outflows. Astron. Astrophys. 347, 594–616 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Dutta, S. et al. ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): detection of a dense SiO jet in the evolved protostellar phase. Astrophys. J. 925, 11 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Woitke, P. et al. 2D disc modelling of the JWST line spectrum of EX Lupi. Astron. Astrophys. 683, A219 (2024).

    CAS 

    Google Scholar
     

  • Vernazza, J. E., Avrett, E. H. & Loeser, R. Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun. Astrophys. J. Suppl. Ser. 45, 635–725 (1981).

    ADS 
    CAS 

    Google Scholar
     

  • Petaev, M. I. & Wood, J. A. The condensation with partial isolation (CWPI) model of condensation in the solar nebula. Meteorit. Planet. Sci. 33, 1123–1137 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Jorge, D. M., Kamp, I. E. E., Waters, L. B. F. M., Woitke, P. & Spaargaren, R. J. Forming planets around stars with non-solar elemental composition. Astron. Astrophys. 660, A85 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Gail, H. P. Radial mixing in protoplanetary accretion disks. IV. Metamorphosis of the silicate dust complex. Astron. Astrophys. 413, 571–591 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Komatsu, M. et al. First evidence for silica condensation within the solar protoplanetary disk. Proc. Natl Acad. Sci. 115, 7497–7502 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krot, A. N. Refractory inclusions in carbonaceous chondrites: records of early solar system processes. Meteorit. Planet. Sci. 54, 1647–1691 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torrano, Z. A. et al. A common isotopic reservoir for amoeboid olivine aggregates (AOAs) and calcium-aluminum-rich inclusions (CAIs) revealed by Ti and Cr isotopic compositions. Earth Planet. Sci. Lett. 627, 118551 (2024).

    CAS 

    Google Scholar
     

  • Sargent, B. A. et al. Dust processing and grain growth in protoplanetary disks in the Taurus–Auriga star-forming region. Astrophys. J. Suppl. Ser. 182, 477–508 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Olofsson, J. et al. C2D Spitzer-IRS spectra of disks around T Tauri stars. IV. Crystalline silicates. Astron. Astrophys. 507, 327–345 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y., Ormel, C. W., Mori, S. & Bai, X.-N. Solving for the 2D water snowline with hydrodynamic simulations. Emergence of gas outflow, water cycle and temperature plateau. Astron. Astrophys. 696, A38 (2025).

  • Faure, J., Fromang, S. & Latter, H. Thermodynamics of the dead-zone inner edge in protoplanetary disks. Astron. Astrophys. 564, A22 (2014).

    ADS 

    Google Scholar
     

  • Yang, L. & Ciesla, F. J. The effects of disk building on the distributions of refractory materials in the solar nebula. Meteorit. Planet. Sci. 47, 99–119 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Shu, F. H., Shang, H. & Lee, T. Toward an astrophysical theory of chondrites. Science 271, 1545–1552 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Morbidelli, A. et al. Formation and evolution of a protoplanetary disk: combining observations, simulations, and cosmochemical constraints. Astron. Astrophys. 691, A147 (2024).

    CAS 

    Google Scholar
     

  • Cridland, A. J. et al. Early planet formation in embedded protostellar disks. Setting the stage for the first generation of planetesimals. Astron. Astrophys. 662, A90 (2022).


    Google Scholar
     

  • McClure, M. K., Dominik, C. & Kama, M. Measuring the atomic composition of planetary building blocks. Astron. Astrophys. 642, L15 (2020).

    ADS 

    Google Scholar
     

  • Alexander, C. M. O. Quantitative models for the elemental and isotopic fractionations in the chondrites: the non-carbonaceous chondrites. Geochim. Cosmochim. Acta 254, 246–276 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Grewal, D. S., Nie, N. X., Zhang, B., Izidoro, A. & Asimow, P. D. Accretion of the earliest inner Solar System planetesimals beyond the water snowline. Nat. Astron. 8, 290–297 (2024).

    ADS 

    Google Scholar
     

  • Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S. & Masarik, J. Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth Planet. Sci. Lett. 241, 530–542 (2006).

    ADS 

    Google Scholar
     

  • Kleine, T. et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Tobin, J. J. et al. The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) survey of Orion protostars. II. A statistical characterization of Class 0 and Class I protostellar disks. Astrophys. J. 890, 130 (2020).

    ADS 

    Google Scholar
     

  • Bushouse, H. et al. JWST Calibration Pipeline. Zenodo https://doi.org/10.5281/zenodo.6984365 (2023).

  • Argyriou, I. et al. JWST MIRI flight performance: the Medium-Resolution Spectrometer. Astron. Astrophys. 675, A111 (2023).

    CAS 

    Google Scholar
     

  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. Astron. Soc. Pac. Conf. Ser. 376, 127 (2007).

    ADS 

    Google Scholar
     

  • Müller, H. S. P., Schlöder, F., Stutzki, J. & Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742, 215–227 (2005).

    ADS 

    Google Scholar
     

  • Ehrenfreund, P., Boogert, A. C. A., Gerakines, P. A., Tielens, A. G. G. M. & van Dishoeck, E. F. Infrared spectroscopy of interstellar apolar ice analogs. Astron. Astrophys. 328, 649–669 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Dominik, C., Min, M. & Tazaki, R. OpTool: command-line driven tool for creating complex dust opacities. Astrophysics Source Code Library, record ascl:2104.010 (2021).

  • Kemper, F., Vriend, W. J. & Tielens, A. G. G. M. The absence of crystalline silicates in the diffuse interstellar medium. Astrophys. J. 609, 826–837 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Sogawa, H. et al. Infrared reflection spectra of forsterite crystal. Astron. Astrophys. 451, 357–361 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Jaeger, C. et al. Steps toward interstellar silicate mineralogy. IV. The crystalline revolution. Astron. Astrophys. 339, 904–916 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Sargent, B. A. et al. Silica in protoplanetary disks. Astrophys. J. 690, 1193 (2008).

    ADS 

    Google Scholar
     

  • Zeidler, S., Posch, T. & Mutschke, H. Optical constants of refractory oxides at high temperatures. Mid-infrared properties of corundum, spinel, and α-quartz, potential carriers of the 13 μm feature. Astron. Astrophys. 553, A81 (2013).

    ADS 

    Google Scholar
     

  • Mutschke, H., Posch, T., Fabian, D. & Dorschner, J. Towards the identification of circumstellar hibonite. Astron. Astrophys. 392, 1047–1052 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Mutschke, H. et al. Steps toward interstellar silicate mineralogy. III. The role of aluminium in circumstellar amorphous silicates. Astron. Astrophys. 333, 188–198 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Posch, T. et al. Infrared properties of solid titanium oxides: exploring potential primary dust condensates. Astrophys. J. Suppl. Ser. 149, 437–445 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Rocha, W. R. M. et al. LIDA: the Leiden Ice Database for Astrochemistry. Astron. Astrophys. 668, A63 (2022).

    CAS 

    Google Scholar
     

  • Rocha, W. R. M., Perotti, G., Kristensen, L. E. & Jørgensen, J. K. Fitting infrared ice spectra with genetic modelling algorithms. Presenting the ENIIGMA fitting tool. Astron. Astrophys. 654, A158 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical information-theoretic Approach (Springer, 2002).

  • Francis, L. et al. JOYS: MIRI/MRS spectroscopy of gas-phase molecules from the high-mass star-forming region IRAS 23385+6053. Astron. Astrophys. 683, A249 (2024).

    CAS 

    Google Scholar
     

  • Grant, S. L. et al. MINDS. The detection of 13CO2 with JWST-MIRI indicates abundant CO2 in a protoplanetary disk. Astrophys. J. Lett. 947, L6 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Tabone, B. et al. A rich hydrocarbon chemistry and high C to O ratio in the inner disk around a very low-mass star. Nat. Astron. 7, 805–814 (2023).

    ADS 

    Google Scholar
     

  • Kospal, Á. et al. JWST/MIRI spectroscopy of the disk of the young eruptive star EX Lup in quiescence. Astrophys. J. Lett. 945, L7 (2023).

    ADS 

    Google Scholar
     

  • Pontoppidan, K. M., Evans, N., Bergner, J. & Yang, Y.-L. A constrained dust opacity for models of dense clouds and protostellar envelopes. Res. Notes AAS. 8, 68 (2024).

    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS 

    Google Scholar
     

  • Carr, J. S., Tokunaga, A. T. & Najita, J. Hot H2O emission and evidence for turbulence in the disk of a young star. Astrophys. J. 603, 213–220 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Wilson, T. L. Isotopes in the interstellar medium and circumstellar envelopes. Rep. Prog. Phys. 62, 143–185 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Thi, W. F., van Dishoeck, E. F., Pontoppidan, K. M. & Dartois, E. Evidence for episodic warm outflowing CO gas from the intermediate-mass young stellar object IRAS 08470–4321. Mon. Not. R. Astron. Soc. 406, 1409–1424 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • McClure. JWST data from McClure et al. (2025). Zenodo https://doi.org/10.5281/zenodo.15556630 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments