Thursday, August 21, 2025
No menu items!
HomeNatureRealization of a doped quantum antiferromagnet in a Rydberg tweezer array

Realization of a doped quantum antiferromagnet in a Rydberg tweezer array

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Bohrdt, A., Homeier, L., Reinmoser, C., Demler, E. & Grusdt, F. Exploration of doped quantum magnets with ultracold atoms. Ann. Phys. 435, 168651 (2021).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, 1994).

  • Carroll, A. N. et al. Observation of generalized tJ spin dynamics with tunable dipolar interactions. Science 388, 381–386 (2025).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Qin, M. et al. Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020).

    CAS 

    Google Scholar
     

  • Jiang, H.-C. & Devereaux, T. P. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping t′. Science 365, 1424–1428 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y.-F., Devereaux, T. P. & Jiang, H.-C. Ground-state phase diagram and superconductivity of the doped Hubbard model on six-leg square cylinders. Phys. Rev. B 109, 085121 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Xu, H. et al. Coexistence of superconductivity with partially filled stripes in the Hubbard model. Science 384, eadh7691 (2024).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Bespalova, T. A., Delić, K., Pupillo, G., Tacchino, F. & Tavernelli, I. Simulating the Fermi-Hubbard model with long-range hopping on a quantum computer. Phys. Rev. A 111, 052619 (2025).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Bohrdt, A. et al. Microscopy of bosonic charge carriers in staggered magnetic fields. Preprint at https://arxiv.org/abs/2410.19500 (2024).

  • Homeier, L. et al. Antiferromagnetic bosonic tJ models and their quantum simulation in tweezer arrays. Phys. Rev. Lett. 132, 230401 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    CAS 

    Google Scholar
     

  • Mögerle, J. et al. Spin-1 haldane phase in a chain of Rydberg atoms. PRX Quantum 6, 020332 (2025).


    Google Scholar
     

  • Liu, V. S. et al. Supersolidity and simplex phases in spin-1 Rydberg atom arrays. Preprint at https://arxiv.org/abs/2407.17554 (2024).

  • Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Proust, C. & Taillefer, L. The remarkable underlying ground states of cuprate superconductors. Annu. Rev. Condens. Matter Phys. 10, 409–429 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Bednorz, J. G. & Müller, K. A. Possible highTc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condensed Matter 64, 189–193 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, H.-J. et al. Antiferromagnetic phase transition in a 3D fermionic Hubbard model. Nature 632, 267–272 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Hirthe, S. et al. Magnetically mediated hole pairing in fermionic ladders of ultracold atoms. Nature 613, 463–467 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebrat, M. et al. Observation of Nagaoka polarons in a Fermi–Hubbard quantum simulator. Nature 629, 317–322 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prichard, M. L. et al. Directly imaging spin polarons in a kinetically frustrated Hubbard system. Nature 629, 323–328 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, L.-M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Emery, V. J., Kivelson, S. A. & Lin, H. Q. Phase separation in the tJ model. Phys. Rev. Lett. 64, 475 (1990).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boninsegni, M. Phase separation in mixtures of hard core bosons. Phys. Rev. Lett. 87, 087201 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. Realization of a bosonic antiferromagnet. Nat. Phys. 17, 990–994 (2021).

    CAS 

    Google Scholar
     

  • Jepsen, P. N. et al. Transverse spin dynamics in the anisotropic Heisenberg model realized with ultracold atoms. Phys. Rev. X 11, 041054 (2021).

    CAS 

    Google Scholar
     

  • Harris, T. J., Schollwöck, U., Bohrdt, A. & Grusdt, F. Kinetic magnetism and stripe order in the doped AFM bosonic tJ model. Preprint at https://arxiv.org/abs/2410.00904v1 (2024).

  • Zhang, H.-K., Zhang, J.-X., Xu, J.-S. & Weng, Z.-Y. Quantum-interference-induced pairing in antiferromagnetic bosonic tJ model. Preprint at https://arxiv.org/abs/2409.15424 (2024).

  • Siller, T., Troyer, M., Rice, T. M. & White, S. R. Bosonic model of hole pairs. Phys. Rev. B 63, 195106 (2001).

    ADS 

    Google Scholar
     

  • O’Mahony, S. M. et al. On the electron pairing mechanism of copper-oxide high temperature superconductivity. Proc. Natl. Acad. Sci. 119, e2207449119 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morera, I., Bohrdt, A., Ho, W. W. & Demler, E. Attraction from kinetic frustration in ladder systems. Phys. Rev. Res. 6, 023196 (2024).

    CAS 

    Google Scholar
     

  • Sous, J. & Pretko, M. Fractons from polarons. Phys. Rev. B 102, 214437 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Barredo, D. et al. Coherent excitation transfer in a spin chain of three Rydberg atoms. Phys. Rev. Lett. 114, 113002 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Emperauger, G. et al. Benchmarking direct and indirect dipolar spin-exchange interactions between two Rydberg atoms. Phys. Rev. A 111, 062806 (2025).

    CAS 

    Google Scholar
     

  • Wadenpfuhl, K. & Adams, C. S. Unravelling the structures in the van der Waals interactions of alkali Rydberg atoms. Phys. Rev. A 111, 062803 (2025).

  • Winkler, K. et al. Repulsively bound atom pairs in an optical lattice. Nature 441, 853–856 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Staszewski, L. & Wietek, A. Quench dynamics of stripes and phase separation in the two-dimensional tJ model. Phys. Rev. B 112, 035125 (2025).


    Google Scholar
     

  • White, S. R. & Scalapino, D. J. Phase separation and stripe formation in the two-dimensional tJ model: a comparison of numerical results. Phys. Rev. B 61, 6320 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Kagan, M. Y., Kugel, K. I. & Rakhmanov, A. L. Electronic phase separation: recent progress in the old problem. Phys. Rep. 916, 1–105 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Ji, G. et al. Coupling a mobile hole to an antiferromagnetic spin background: transient dynamics of a magnetic polaron. Phys. Rev. X 11, 021022 (2021).

    CAS 

    Google Scholar
     

  • Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691–695 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber, S. et al. Tutorial: Calculation of Rydberg interaction potentials. J. Phys. B: At. Mol. Opt. Phys. 50, 133001 (2017).

    ADS 

    Google Scholar
     

  • Marder, M., Papanicolaou, N. & Psaltakis, G. C. Phase separation in a tJ model. Phys. Rev. B 41, 6920 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • Bobroff, J. et al. Absence of static phase separation in the high Tc cuprate YBa2Cu3O6+y. Phys. Rev. Lett. 89, 157002 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Daley, A. J. Quantum trajectories and open many-body quantum systems. Adv. Phys. 63, 77–149 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Hauschild, J. et al. Tensor network Python. Code available at https://github.com/tenpy/tenpy/. Documentation available at https://tenpy.readthedocs.io/en/latest/ (2018).

  • Hauschild, J. & Pollmann, F. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes https://doi.org/10.21468/scipostphyslectnotes.5 (2018).

  • RELATED ARTICLES

    Most Popular

    Recent Comments