Friday, March 21, 2025
No menu items!
HomeNatureRapid emergence of latent knowledge in the sensory cortex drives learning

Rapid emergence of latent knowledge in the sensory cortex drives learning

  • Blake, D. T., Strata, F., Churchland, A. K. & Merzenich, M. M. Neural correlates of instrumental learning in primary auditory cortex. Proc. Natl Acad. Sci. USA 99, 10114–10119 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poort, J. et al. Learning enhances sensory and multiple non-sensory representations in primary visual cortex. Neuron 86, 1478–1490 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Meister, M. Learning, fast and slow. Curr. Op. Neurobiol. 75, 102555 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Carandini, M. & Churchland, A. K. Probing perceptual decisions in rodents. Nat. Neurosci. 16, 824–831 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Polley, D. B., Heiser, M. A., Blake, D. T., Schreiner, C. E. & Merzenich, M. M. Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proc. Natl Acad. Sci. USA 101, 16351–16356 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallistel, C. R., Fairhurst, S. & Balsam, P. The learning curve: implications of a quantitative analysis. Proc. Natl Acad. Sci. USA 101, 13124–13131 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kuchibhotla, K. V. et al. Dissociating task acquisition from expression during learning reveals latent knowledge. Nat. Commun. 10, 2151 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Schreiner, C. E. & Polley, D. B. Auditory map plasticity: diversity in causes and consequences. Curr. Opin. Neurobiol. 24, 143–156 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16, 1671–1677 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z. & Kuchibhotla, K. V. Performance errors during learning reflect a dynamic choice strategy. Curr. Biol. 34, 2107–2117.e5 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ohl, F. W., Wetzel, W., Wagner, T., Rech, A. & Scheich, H. Bilateral ablation of auditory cortex in mongolian gerbil affects discrimination of frequency modulated tones but not of pure tones. Learning 6, 347–362 (1999).

    CAS 
    MATH 

    Google Scholar
     

  • Romanski, L. M. & LeDoux, J. E. Bilateral destruction of neocortical and perirhinal projection targets of the acoustic thalamus does not disrupt auditory fear conditioning. Neurosci. Lett. 142, 228–232 (1992).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ceballo, S., Piwkowska, Z., Bourg, J. & Bathellier, B. Targeted cortical manipulation of auditory perception. Neuron 104, 1168–1179.e5 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’sullivan, C., Weible, A. P. & Wehr, M. Auditory cortex contributes to discrimination of pure tones. eNeuro 6, 0340-19.2019 (2019).

    Article 

    Google Scholar
     

  • Barack, D. L. et al. A call for more clarity around causality in neuroscience. Trends Neurosci. 45, 654–655 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Slonina, Z. A., Poole, K. C. & Bizley, J. K. What can we learn from inactivation studies? Lessons from auditory cortex. Trends Neurosci. 45, 64–77 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaramillo, S. & Zador, A. M. The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nat. Neurosci. 14, 246–253 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kuchibhotla, K. V. et al. Parallel processing by cortical inhibition enables context-dependent behavior. Nat. Neurosci. 20, 62–71 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gimenez, T. L., Lorenc, M. & Jaramillo, S. Adaptive categorization of sound frequency does not require the auditory cortex in rats. J. Neurophysiol. 114, 1137–1145 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoilova, V. V. et al. Auditory cortex reflects goal-directed movement but is not necessary for behavioral adaptation in sound-cued reward tracking. J. Neurophysio. 124, 1056–1071 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Williams, A. H. et al. Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis. Neuron 98, 1099–1115.e8 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Acar, E., Dunlavy, D. M., Kolda, T. G. & Mørup, M. Scalable tensor factorizations for incomplete data. Chemom. Intell. Lab. Syst. 106, 41–56 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kilgard, M. P. & Merzenich, M. M. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Polley, D. B. Perceptual learning directs auditory cortical map reorganization through top-down influences. J. Neurosci. 26, 4970–4982 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Blake, D. T., Heiser, M. A., Caywood, M. & Merzenich, M. M. Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron 52, 371–381 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elias, G. A., Bieszczad, K. M. & Weinberger, N. M. Learning strategy refinement reverses early sensory cortical map expansion but not behavior: support for a theory of directed cortical substrates of learning and memory. Neurobiol. Learn. Mem. 126, 39–55 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinberger, N. M. Specific long-term memory traces in primary auditory cortex. Nat. Rev. Neurosci. 5, 279–290 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kato, H. K., Gillet, S. N. & Isaacson, J. S. Flexible sensory representations in auditory cortex driven by behavioral relevance. Neuron 88, 1027–1039 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shepard, K. N., Chong, K. K. & Liu, R. C. Contrast enhancement without transient map expansion for species-specific vocalizations in core auditory cortex during learning. eNeuro 3, 0318-16.2016 (2016).

    Article 

    Google Scholar
     

  • Olshausen, B. A. & Field, D. J. in Problems in Systems Neuroscience (eds van Hemmen, J. L. & Sejnowski, T. J.) 182–212 (Oxford Univ. Press, 2009).

  • Banerjee, A. et al. Value-guided remapping of sensory circuits by lateral orbitofrontal cortex in reversal learning. Nature 585, 245–250 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Schneider, D. M., Nelson, A. & Mooney, R. A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature 513, 189–194 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lacefield, C. O., Pnevmatikakis, E. A., Paninski, L. & Bruno, R. M. Reinforcement learning recruits somata and apical dendrites across layers of primary sensory cortex. Cell Rep. 26, 2000–2008.e2 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shuler, M. G. & Bear, M. F. Reward timing in the primary visual cortex. Science 311, 1606–1609 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Guo, L., Weems, J. T., Walker, W. I., Levichev, A. & Jaramillo, S. Choice-selective neurons in the auditory cortex and in its striatal target encode reward expectation. J. Neurosci. 39, 3687–3697 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otazu, G. H., Tai, L. H., Yang, Y. & Zador, A. M. Engaging in an auditory task suppresses responses in auditory cortex. Nat. Neurosci. 12, 646–654 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fritz, J., Shamma, S., Elhilali, M. & Klein, D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat. Neurosci. 6, 1216–1223 (2003).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Insanally, M. N. et al. Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons. eLife 8, e42409 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Lee, J. & Kim, G. Integration of locomotion and auditory signals in the mouse inferior colliculus. eLife 9, e52228 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction, 2nd edn (MIT Press, 2018).

  • Zhu, F., Elnozahy, S., Lawlor, J. & Kuchibhotla, K. V. The cholinergic basal forebrain provides a parallel channel for state-dependent sensory signaling to auditory cortex. Nat. Neurosci. 26, 810–819 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, W., Robert, B. & Polley, D. B. The cholinergic basal forebrain links auditory stimuli with delayed reinforcement to support learning. Neuron 103, 1164–1177 (2019).

  • Liu, D. et al. Orbitofrontal control of visual cortex gain promotes visual associative learning. Nat. Commun. 11, 2784 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Winkowski, D. E. et al. Orbitofrontal cortex neurons respond to sound and activate primary auditory cortex neurons. Cereb. Cortex 28, 868–879 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Miller, K. J., Botvinick, M. M. & Brody, C. D. Value representations in the rodent orbitofrontal cortex drive learning, not choice. eLife 11, e64575 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ridderinkhof, K. R., Wildenberg, W. P. V. D., Segalowitz, S. J. & Carter, C. S. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 56, 129–140 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Kolling, N., Behrens, T. E. J., Mars, R. B. & Rushworth, M. F. S. Neural mechanisms of foraging. Science 336, 95–98 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Znamenskiy, P. & Zador, A. M. Corticostriatal neurons in auditory cortex drive decisions during auditory discrimination. Nature 497, 482–485 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bajo, V. M. et al. Silencing cortical activity during sound-localization training impairs auditory perceptual learning. Nat. Commun. 10, 3075 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kawai, R. et al. Motor cortex is required for learning but not for executing a motor skill. Neuron 86, 800–812 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Quass, G. L., Rogalla, M. M., Ford, A. N. & Apostolides, P. F. Mixed representations of sound and action in the auditory midbrain. J. Neurosci. 44, e1831232024 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasegawa, M., Huang, Z., Paricio-Montesinos, R. & Gründemann, J. Network state changes in sensory thalamus represent learned outcomes. Nat. Commun. 15, 7830 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Winer, J. A., Diehl, J. J. & Larue, D. T. Projections of auditory cortex to the medial geniculate body of the cat. J. Comp. Neurol. 430, 27–55 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Saldaña, E., Feliciano, M. & Mugnaini, E. Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J. Comp. Neurol. 371, 15–40 (1996).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Ledoux, J. E., Farb, C. R. & Romanski, L. M. Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neurosci. Lett. 134, 139–144 (1991).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, L., Wang, X., Ge, S. & Xiong, Q. Medial geniculate body and primary auditory cortex differentially contribute to striatal sound representations. Nat. Commun. 10, 418 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • FitzGerald, T. H., Friston, K. J. & Dolan, R. J. Characterising reward outcome signals in sensory cortex. NeuroImage 83, 329–334 (2013).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Huang, Y., Heil, P. & Brosch, M. Associations between sounds and actions in early auditory cortex of nonhuman primates. eLife 8, e43281 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, N. et al. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. eLife 8, e48622 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).

  • Vega-Vilar, M., Horvitz, J. C. & Nicola, S. M. NMDA receptor-dependent plasticity in the nucleus accumbens connects reward-predictive cues to approach responses. Nat. Commun. 10, 4429 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hitchcock, F. L. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927).

    Article 
    MATH 

    Google Scholar
     

  • Hitchcock, F. L. Multilple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 7, 39–79 (1927).

    Article 
    MATH 

    Google Scholar
     

  • Kolda, T. G. & Bader, B. W. Tensor decompositions and review. SIAM Rev. 51, 455–500 (2009).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Harshman, R. Foundations of the parafac procedure: models and conditions for an “explanatory” multimodal factor analysis. UCLA Work. Pap. Phon. 16, 1– 84 (1970).

    MATH 

    Google Scholar
     

  • Carroll, J. D. & Chang, J. J. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–319 (1970).

    Article 
    MATH 

    Google Scholar
     

  • Atiani, S. et al. Emergent selectivity for task-relevant stimuli in higher-order auditory cortex. Neuron 82, 486–499 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franceschi, G. D. & Barkat, T. R. Task-induced modulations of neuronal activity along the auditory pathway. Cell Rep. 37, 110115 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Kruskal, J. B. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Its Appl. 18, 95–138 (1977).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Kolda, T. G. Multilinear Operators for Higher-Order Decompositions https://doi.org/10.2172/923081 (Sandia National Laboratories, 2006).

  • Acar, E., Dunlavy, D. M. & Kolda, T. G. A scalable optimization approach for fitting canonical tensor decompositions. J. Chemometrics 25, 67–86 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Tomasi, G. & Bro, R. A comparison of algorithms for fitting the parafac model. Comput. Stat. Data Anal. 50, 1700–1734 (2006).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments