Wang, M.-T. & Degol, J. L. Gender gap in science, technology, engineering, and mathematics (STEM): current knowledge, implications for practice, policy, and future directions. Educ. Psychol. Rev. 29, 119–140 (2017).
OECD. The ABC of Gender Equality in Education: Aptitude, Behaviour, Confidence (OECD, 2015); https://doi.org/10.1787/9789264229945-en.
Hutchison, J. E., Lyons, I. M. & Ansari, D. More similar than different: gender differences in children’s basic numerical skills are the exception not the rule. Child Dev. 90, e66–e79 (2019).
Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B. & Williams, C. C. Gender similarities characterize math performance. Science 321, 494–495 (2008).
Kersey, A. J., Braham, E. J., Csumitta, K. D., Libertus, M. E. & Cantlon, J. F. No intrinsic gender differences in children’s earliest numerical abilities. npj Sci. Learn. 3, 12 (2018).
Lauer, J. E., Yhang, E. & Lourenco, S. F. The development of gender differences in spatial reasoning: a meta-analytic review. Psychol. Bull. 145, 537–565 (2019).
Miller, D. I. & Halpern, D. F. The new science of cognitive sex differences. Trends Cogn. Sci. 18, 37–45 (2014).
Spelke, E. S. Sex differences in intrinsic aptitude for mathematics and science?: a critical review. Am. Psychol. 60, 950–958 (2005).
Amalric, M. & Dehaene, S. Origins of the brain networks for advanced mathematics in expert mathematicians. Proc. Natl Acad. Sci. USA 113, 4909–4917 (2016).
Dehaene, S. The Number Sense: How the Mind Creates Mathematics (Taylor & Francis, 1997).
Levine, S. C., Foley, A., Lourenco, S., Ehrlich, S. & Ratliff, K. Sex differences in spatial cognition: advancing the conversation. Wiley Interdiscip. Rev.: Cogn. Sci. 7, 127–155 (2016).
Enge, A., Kapoor, S., Kieslinger, A.-S. & Skeide, M. A. A meta-analysis of mental rotation in the first years of life. Dev. Sci. 26, e13381 (2023).
Nosek, B. A. et al. National differences in gender–science stereotypes predict national sex differences in science and math achievement. Proc. Natl Acad. Sci. USA 106, 10593–10597 (2009).
Stoevenbelt, A. H. et al. Are speeded tests unfair? Modeling the impact of time limits on the gender gap in mathematics. Educ. Psychol. Meas. 83, 684–709 (2023).
Voyer, D. Time limits and gender differences on paper-and-pencil tests of mental rotation: a meta-analysis. Psychon. Bull. Rev. 18, 267–277 (2011).
Arias, O., Canals, C., Mizala, A. & Meneses, F. Gender gaps in mathematics and language: the bias of competitive achievement tests. PLoS ONE 18, e0283384 (2023).
Boaler J. What’s Math Got to Do with It?: How Teachers and Parents Can Transform Mathematics Learning and Inspire Success (Center for Comparative Studies in Race & Ethnicity, 2015).
Piazza, M. Neurocognitive start-up tools for symbolic number representations. Trends Cogn. Sci. 14, 542–551 (2010).
Breda, T., Jouini, E., Napp, C. & Thebault, G. Gender stereotypes can explain the gender-equality paradox. Proc. Natl Acad. Sci. USA 117, 31063–31069 (2020).
Campbell, J. A., McIntyre, J. & Kucirkova, N. Gender equality, human development, and PISA results over Time. Soc. Sci. 10, 480 (2021).
Cimpian, J. R., Lubienski, S. T., Timmer, J. D., Makowski, M. B. & Miller, E. K. Have gender gaps in math closed? Achievement, teacher perceptions, and learning behaviors across two ECLS-K cohorts. AERA Open https://doi.org/10.1177/2332858416673617 (2016).
Penner, A. M. & Paret, M. Gender differences in mathematics achievement: exploring the early grades and the extremes. Soc. Sci. Res. 37, 239–253 (2008).
Fryer, R. G. Jr. & Levitt, S. D. An empirical analysis of the gender gap in mathematics. Am. Econ. J.: Appl. Econ. 2, 210–240 (2010).
Husain, M. & Millimet, D. L. The mythical ‘boy crisis’? Econ. Educ. Rev. 28, 38–48 (2009).
Fischer, J.-P. & Thierry, X. Boy’s math performance, compared to girls’, jumps at age 6 (in the ELFE’s data at least). Br. J. Dev. Psychol. https://doi.org/10.1111/bjdp.12423 (2021).
OECD. Is the Last Mile the Longest? Economic Gains from Gender Equality in Nordic Countries (OECD, 2018); https://doi.org/10.1787/6cda329d-en.
Di Tommaso, M. L. et al. Tackling the gender gap in mathematics with active learning methodologies. Econ. Educ. Rev. 100, 102538 (2024).
Bian, L., Leslie, S.-J. & Cimpian, A. Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science 355, 389–391 (2017).
Carlana, M. Implicit stereotypes: evidence from teachers’ gender bias. Q. J. Econ. 134, 1163–1224 (2019).
Gunderson, E. A., Ramirez, G., Levine, S. C. & Beilock, S. L. The role of parents and teachers in the development of gender-related math attitudes. Sex Roles: J. Res. 66, 153–166 (2012).
Robinson-Cimpian, J. P., Lubienski, S. T., Ganley, C. M. & Copur-Gencturk, Y. Teachers’ perceptions of students’ mathematics proficiency may exacerbate early gender gaps in achievement. Dev. Psychol. 50, 1262–1281 (2014).
Bharadwaj, P., De Giorgi, G., Hansen, D. & Neilson, C. A. The gender gap in mathematics: evidence from Chile. Econ. Dev. Cult. Change 65, 141–166 (2016).
Tiedemann, J. Parents’ gender stereotypes and teachers’ beliefs as predictors of children’s concept of their mathematical ability in elementary school. J. Educ. Psychol. 92, 144–151 (2000).
Upadyaya, K. & Eccles, J. S. How do teachers’ beliefs predict children’s interest in math from kindergarten to sixth grade? Merrill-Palmer Q. 60, 403–430 (2014).
Copur-Gencturk, Y., Thacker, I. & Cimpian, J. R. Teachers’ race and gender biases and the moderating effects of their beliefs and dispositions. Int. J. STEM Educ. 10, 31 (2023).
Van Mier, H. I., Schleepen, T. M. J. & Van den Berg, F. C. G. Gender differences regarding the impact of math anxiety on arithmetic performance in second and fourth graders. Front. Psychol. 9, 2690 (2019).
Beilock, S. L., Gunderson, E. A., Ramirez, G. & Levine, S. C. Female teachers’ math anxiety affects girls’ math achievement. Proc. Natl Acad. Sci. USA 107, 1860–1863 (2010).
Miller, D. I., Nolla, K. M., Eagly, A. H. & Uttal, D. H. The development of children’s gender‐science stereotypes: a meta‐analysis of 5 decades of U.S. Draw‐a‐Scientist studies. Child Dev. 89, 1943–1955 (2018).
Contini, D., Tommaso, M. L. D. & Mendolia, S. The gender gap in mathematics achievement: evidence from Italian data. Econ. Educ. Rev. 58, 32–42 (2017).
Dhuey, E., Figlio, D., Karbownik, K. & Roth, J. School starting age and cognitive development. J. Policy Anal. Manag. 38, 538–578 (2019).
Downey, D. B., Kuhfeld, M. & van Hek, M. Schools as a relatively standardizing institution: the case of gender gaps in cognitive skills. Sociol. Educ. 95, 89–109 (2022).
Bassok, D., Latham, S. & Rorem, A. Is kindergarten the new first grade? AERA Open https://doi.org/10.1177/2332858415616358 (2016).
Breda, T. & Napp, C. Girls’ comparative advantage in reading can largely explain the gender gap in math-related fields. Proc. Natl Acad. Sci. USA 116, 15435–15440 (2019).
Buser, T., Niederle, M. & Oosterbeek, H. Gender, competitiveness, and career choices. Q. J. Econ. 129, 1409–1447 (2014).
Bailey, D. H., Littlefield, A. & Geary, D. C. The codevelopment of skill at and preference for use of retrieval-based processes for solving addition problems: individual and sex differences from first to sixth grades. J. Exp. Child Psychol. 113, 78–92 (2012).
Reardon, S. F., Fahle, E. M., Kalogrides, D., Podolsky, A. & Zárate, R. C. Gender achievement gaps in U.S. school districts. Am. Educ. Res. J. 56, 2474–2508 (2019).
Huguet, P. & Régner, I. Counter-stereotypic beliefs in math do not protect school girls from stereotype threat. J. Exp. Soc. Psychol. 45, 1024–1027 (2009).
Stout, J. G., Dasgupta, N., Hunsinger, M. & McManus, M. A. STEMing the tide: using ingroup experts to inoculate women’s self-concept in science, technology, engineering, and mathematics (STEM). J. Personal. Soc. Psychol. 100, 255–270 (2011).
Alan, S. & Ertac, S. Mitigating the gender gap in the willingness to compete: evidence from a randomized field experiment. J. Eur. Econ. Assoc. 17, 1147–1185 (2019).
Miyake, A. et al. Reducing the gender achievement gap in college science: a classroom study of values affirmation. Science 330, 1234–1237 (2010).
Rocher, T. Construction d’un indice de position sociale des élèves. Éducation & formations 90, 5–27 (2016).