Wednesday, January 28, 2026
No menu items!
HomeNatureRadiation-tolerant atomic-layer-scale RF system for spaceborne communication

Radiation-tolerant atomic-layer-scale RF system for spaceborne communication

  • Chen, Y. A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Mao, D. et al. Space-qualifying silicon photonic modulators and circuits. Sci. Adv. 10, eadi9171 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prinzie, J., Simanjuntak, F. M., Leroux, P. & Prodromakis, T. Low-power electronic technologies for harsh radiation environments. Nat. Electron. 4, 243–253 (2021).

    Article 

    Google Scholar
     

  • Fransson, C. et al. Emission lines due to ionizing radiation from a compact object in the remnant of Supernova 1987A. Science 383, 898–903 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Muhammad, Z. et al. Radiation-tolerant electronic devices using wide bandgap semiconductors. Adv. Mater. Technol. 8, 2200539 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gutiérrez, O. et al. Electronic components TID radiation qualification for space applications using LINACs. Comparative analysis with 60Co standard procedure. Adv. Space Res. 69, 4376–4390 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lee, Y. B. et al. Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory. Nat. Commun. 14, 460 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Delkowski, M., Smith, C. T. G., Anguita, J. V. & Silva, S. R. P. Radiation and electrostatic resistance for ultra-stable polymer composites reinforced with carbon fibers. Sci. Adv. 9, eadd6947 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindhard, J., Nielsen, V., Scharff, M. & Thomsen, P. Integral equations governing radiation effects. Kgl. Dan. Vidensk. Jelsk. Mat. -fys. Medd. 33, 1–42 (1963).


    Google Scholar
     

  • L’annunziata, M. F. in Handbook of Radioactivity Analysis 2nd edn, Ch. 1, 1–121 (Academic Press, 2003).

  • Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogl, T. et al. Radiation tolerance of two-dimensional material-based devices for space applications. Nat. Commun. 10, 1202 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Krasheninnikov, A. V. Are two-dimensional materials radiation tolerant? Nanoscale Horiz. 5, 1447–1452 (2020).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Komsa, H. P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Vierimaa, V., Krasheninnikov, A. V. & Komsa, H. P. Phosphorene under electron beam: from monolayer to one-dimensional chains. Nanoscale 8, 7949–7957 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • McMorrow, J. J. et al. Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors. Appl. Phys. Lett. 110, 073102 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wu, X. H. et al. Electron irradiation-induced defects for reliability improvement in monolayer MoS2-based conductive-point memory devices. npj 2D Mater. Appl. 6, 31 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Schranghamer, T. F. et al. Radiation resilient two-dimensional electronics. ACS Appl. Mater. Interfaces 15, 26946–26959 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernini, A. W., Fice, M. J. & Balakier, K. Low-power-consumption coherent receiver architecture for satellite optical links. In Proc. 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS) 149–153 (IEEE, 2022).

  • Berger, M. J., Coursey, J. S., Zucker, M. A. & Chang, J. Stopping-power & range tables for electrons, protons, and helium ions. NIST https://doi.org/10.18434/T4NC7P (2017).

  • Boschini, M. J., Rancoita, P. G. & Tacconi, M. SR-NIEL – 7 calculator: Screened relativistic (SR) treatment for NIEL dose. Nuclear and electronic stopping power calculator. SR-NIEL https://www.sr-niel.org (2014).

  • SPENVIS, SPace ENVironment Information System. http://www.spenvis.oma.be (2024).

  • Ahmad Tarmizi, A. et al. Study on the effect of 65 nm NMOS transistor using SILVACO TCAD. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2023.06.122 (2023).

  • Srinivasaiah, H. C. Implications of halo implant shadowing and backscattering from mask layer edges on device leakage current in 65nm SRAM. In Proc. 2012 25th International Conference on VLSI Design, 412–417 (IEEE, 2012).

  • Xia, Y. et al. 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nat. Mater. 22, 1324–1331 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ansh, A., Patbhaje, U., Kumar, J., Meersha, A. & Shrivastava, M. Origin of electrically induced defects in monolayer MoS2 grown by chemical vapor deposition. Commun. Mater. 4, 8 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Greig, T. et al. Total ionizing dose effects on I-V and noise characteristics of MOS transistors in a 0.18 μm CMOS Image Sensor process. In Proc. 2013 14th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 126–130 (IEEE, 2013).

  • Ilik, S., Kabaoglu, A., Solmaz, N. S. & Yelten, M. B. Modeling of total ionizing dose degradation on 180-nm n-MOSFETs using BSIM3. IEEE Trans. Electron Devices 66, 4617–4622 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Pang, J. et al. A CMOS dual-polarized phased-array beamformer utilizing cross-polarization leakage cancellation for 5G MIMO systems. IEEE J. Solid-State Circuits 56, 1310–1326 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Arai, T. et al. A 77-GHz 8RX3TX transceiver for 250-m long-range automotive radar in 40-nm CMOS technology. IEEE J. Solid-State Circuits 56, 1332–1344 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mondal, S., Carley, L. R. & Paramesh, J. Dual-band, two-layer millimeter-wave transceiver for hybrid MIMO systems. IEEE J. Solid-State Circuits 57, 339–355 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tahbazalli, P. A 28-GHz eight-element phased-array receiver front-end with compact size in 65-nm CMOS technology for 5G new radio. Aeu-Int. J. Electron. Commun. 170, 154838 (2023).

    Article 

    Google Scholar
     

  • Ameen, H. A. et al. A 28 GHz four-channel phased-array transceiver in 65-nm CMOS technology for 5G applications. Aeu-Int. J. Electron. Commun. 98, 19–28 (2019).

    Article 

    Google Scholar
     

  • Yang, X. et al. Low-loss heterogeneous integrations with high output power radar applications at W-band. IEEE J. Solid-State Circuits 57, 1563–1577 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pang, J. et al. A 28-GHz CMOS phased-array beamformer utilizing neutralized bi-directional technique supporting dual-polarized MIMO for 5G NR. IEEE J. Solid-State Circuits 55, 2371–2386 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pang, J. et al. A 50.1-Gb/s 60-GHz CMOS transceiver for IEEE 802.11ay with calibration of LO feedthrough and I/Q imbalance. IEEE J. Solid-State Circuits 54, 1375–1390 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Jain, A. & Singhai, R. Comparative analysis of FEC subsystem in fixed satellite broadcasting standards. In Proc. 2017 International Conference on Recent Innovations in Signal Processing and Embedded Systems (RISE), 30–32 (IEEE, 2017).

  • Hao, Z. S., Zheng, Z. M., Xu, F. M. & Qin, Z. C. Effect analysis of polarization interference on satellite-to-ground remote sensing data transmission. In Proc. 2016 16th International Symposium on Communications and Information Technologies (ISCIT), 505–508 (IEEE, 2016).

  • Bogorad, A. L., Likar, J. J., Lombardi, R. E., Herschitz, R. & Kircher, G. On-orbit total dose measurements from 1998 to 2007 using pFET dosimeters. IEEE Trans. Nucl. Sci. 57, 3154–3162 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • Yin, Y. N. et al. Total ionizing dose and single event effect response of 22 nm ultra-thin body and buried oxide fully depleted silicon-on-insulator technology. Microelectron. Reliab. 152, 115296 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Repairable polymer solid electrolyte gated MoS2 field effect devices with large radiation tolerance. Adv. Electron. Mater. 8, 2100619 (2022).

    Article 
    CAS 

    Google Scholar
     

  • He, Z. Y. et al. Defect engineering in single-layer MoS2 using heavy ion irradiation. ACS Appl. Mater. Interfaces 10, 42524–42533 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Su, S. H. & Xue, J. M. Facile fabrication of subnanopores in graphene under ion irradiation: molecular dynamics simulations. ACS Appl. Mater. Interfaces 13, 12366–12374 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghorbani-Asl, M., Kretschmer, S., Spearot, D. E. & Krasheninnikov, A. V. Two-dimensional MoS2 under ion irradiation: from controlled defect production to electronic structure engineering. 2D Mater. 4, 025078 (2017).

    Article 

    Google Scholar
     

  • Yin, K. D. et al. Generating sub-nanometer pores in single-layer MoS2 by heavy-ion bombardment for gas separation: A theoretical perspective. ACS Appl. Mater. Interfaces 10, 28909–28917 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, M. et al. Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering. Sci. Adv. 7, eabe7138 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Gupta, S., Periasamy, P. & Narayanan, B. Defect dynamics in two-dimensional black phosphorus under argon ion irradiation. Nanoscale 13, 8575–8590 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teodoro, L. et al. in From Habitability to Life on Mars (eds Cabrol, N. A. & Grin, E. A.) 211–231 (Elsevier, 2018).

  • Fano, U. Penetration of protons, alpha particles, and mesons. Annu. Rev. Nucl. Sci. 13, 1–66 (1963).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Torrens, I. M. & Robinson, M. T. in Radiation-induced Voids in Metals (eds Corbett, J. W. & Ianniello, L. C.) 739–756 (U.S. Atomic Energy Commission, 1972).

  • Norgett, M. J., Robinson, M. T. & Torrens, I. M. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975).

    Article 

    Google Scholar
     

  • Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping and Range of Ions in Solids 1st edn (Pergamon Press, 1985).

  • RELATED ARTICLES

    Most Popular

    Recent Comments