Chen, Y. A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).
Mao, D. et al. Space-qualifying silicon photonic modulators and circuits. Sci. Adv. 10, eadi9171 (2024).
Prinzie, J., Simanjuntak, F. M., Leroux, P. & Prodromakis, T. Low-power electronic technologies for harsh radiation environments. Nat. Electron. 4, 243–253 (2021).
Fransson, C. et al. Emission lines due to ionizing radiation from a compact object in the remnant of Supernova 1987A. Science 383, 898–903 (2024).
Muhammad, Z. et al. Radiation-tolerant electronic devices using wide bandgap semiconductors. Adv. Mater. Technol. 8, 2200539 (2023).
Gutiérrez, O. et al. Electronic components TID radiation qualification for space applications using LINACs. Comparative analysis with 60Co standard procedure. Adv. Space Res. 69, 4376–4390 (2022).
Lee, Y. B. et al. Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory. Nat. Commun. 14, 460 (2023).
Delkowski, M., Smith, C. T. G., Anguita, J. V. & Silva, S. R. P. Radiation and electrostatic resistance for ultra-stable polymer composites reinforced with carbon fibers. Sci. Adv. 9, eadd6947 (2023).
Lindhard, J., Nielsen, V., Scharff, M. & Thomsen, P. Integral equations governing radiation effects. Kgl. Dan. Vidensk. Jelsk. Mat. -fys. Medd. 33, 1–42 (1963).
L’annunziata, M. F. in Handbook of Radioactivity Analysis 2nd edn, Ch. 1, 1–121 (Academic Press, 2003).
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Vogl, T. et al. Radiation tolerance of two-dimensional material-based devices for space applications. Nat. Commun. 10, 1202 (2019).
Krasheninnikov, A. V. Are two-dimensional materials radiation tolerant? Nanoscale Horiz. 5, 1447–1452 (2020).
Komsa, H. P. et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).
Vierimaa, V., Krasheninnikov, A. V. & Komsa, H. P. Phosphorene under electron beam: from monolayer to one-dimensional chains. Nanoscale 8, 7949–7957 (2016).
McMorrow, J. J. et al. Vacuum ultraviolet radiation effects on two-dimensional MoS2 field-effect transistors. Appl. Phys. Lett. 110, 073102 (2017).
Wu, X. H. et al. Electron irradiation-induced defects for reliability improvement in monolayer MoS2-based conductive-point memory devices. npj 2D Mater. Appl. 6, 31 (2022).
Schranghamer, T. F. et al. Radiation resilient two-dimensional electronics. ACS Appl. Mater. Interfaces 15, 26946–26959 (2023).
Bernini, A. W., Fice, M. J. & Balakier, K. Low-power-consumption coherent receiver architecture for satellite optical links. In Proc. 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS) 149–153 (IEEE, 2022).
Berger, M. J., Coursey, J. S., Zucker, M. A. & Chang, J. Stopping-power & range tables for electrons, protons, and helium ions. NIST https://doi.org/10.18434/T4NC7P (2017).
Boschini, M. J., Rancoita, P. G. & Tacconi, M. SR-NIEL – 7 calculator: Screened relativistic (SR) treatment for NIEL dose. Nuclear and electronic stopping power calculator. SR-NIEL https://www.sr-niel.org (2014).
SPENVIS, SPace ENVironment Information System. http://www.spenvis.oma.be (2024).
Ahmad Tarmizi, A. et al. Study on the effect of 65 nm NMOS transistor using SILVACO TCAD. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2023.06.122 (2023).
Srinivasaiah, H. C. Implications of halo implant shadowing and backscattering from mask layer edges on device leakage current in 65nm SRAM. In Proc. 2012 25th International Conference on VLSI Design, 412–417 (IEEE, 2012).
Xia, Y. et al. 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nat. Mater. 22, 1324–1331 (2023).
Ansh, A., Patbhaje, U., Kumar, J., Meersha, A. & Shrivastava, M. Origin of electrically induced defects in monolayer MoS2 grown by chemical vapor deposition. Commun. Mater. 4, 8 (2023).
Greig, T. et al. Total ionizing dose effects on I-V and noise characteristics of MOS transistors in a 0.18 μm CMOS Image Sensor process. In Proc. 2013 14th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 126–130 (IEEE, 2013).
Ilik, S., Kabaoglu, A., Solmaz, N. S. & Yelten, M. B. Modeling of total ionizing dose degradation on 180-nm n-MOSFETs using BSIM3. IEEE Trans. Electron Devices 66, 4617–4622 (2019).
Pang, J. et al. A CMOS dual-polarized phased-array beamformer utilizing cross-polarization leakage cancellation for 5G MIMO systems. IEEE J. Solid-State Circuits 56, 1310–1326 (2021).
Arai, T. et al. A 77-GHz 8RX3TX transceiver for 250-m long-range automotive radar in 40-nm CMOS technology. IEEE J. Solid-State Circuits 56, 1332–1344 (2021).
Mondal, S., Carley, L. R. & Paramesh, J. Dual-band, two-layer millimeter-wave transceiver for hybrid MIMO systems. IEEE J. Solid-State Circuits 57, 339–355 (2022).
Tahbazalli, P. A 28-GHz eight-element phased-array receiver front-end with compact size in 65-nm CMOS technology for 5G new radio. Aeu-Int. J. Electron. Commun. 170, 154838 (2023).
Ameen, H. A. et al. A 28 GHz four-channel phased-array transceiver in 65-nm CMOS technology for 5G applications. Aeu-Int. J. Electron. Commun. 98, 19–28 (2019).
Yang, X. et al. Low-loss heterogeneous integrations with high output power radar applications at W-band. IEEE J. Solid-State Circuits 57, 1563–1577 (2022).
Pang, J. et al. A 28-GHz CMOS phased-array beamformer utilizing neutralized bi-directional technique supporting dual-polarized MIMO for 5G NR. IEEE J. Solid-State Circuits 55, 2371–2386 (2020).
Pang, J. et al. A 50.1-Gb/s 60-GHz CMOS transceiver for IEEE 802.11ay with calibration of LO feedthrough and I/Q imbalance. IEEE J. Solid-State Circuits 54, 1375–1390 (2019).
Jain, A. & Singhai, R. Comparative analysis of FEC subsystem in fixed satellite broadcasting standards. In Proc. 2017 International Conference on Recent Innovations in Signal Processing and Embedded Systems (RISE), 30–32 (IEEE, 2017).
Hao, Z. S., Zheng, Z. M., Xu, F. M. & Qin, Z. C. Effect analysis of polarization interference on satellite-to-ground remote sensing data transmission. In Proc. 2016 16th International Symposium on Communications and Information Technologies (ISCIT), 505–508 (IEEE, 2016).
Bogorad, A. L., Likar, J. J., Lombardi, R. E., Herschitz, R. & Kircher, G. On-orbit total dose measurements from 1998 to 2007 using pFET dosimeters. IEEE Trans. Nucl. Sci. 57, 3154–3162 (2010).
Yin, Y. N. et al. Total ionizing dose and single event effect response of 22 nm ultra-thin body and buried oxide fully depleted silicon-on-insulator technology. Microelectron. Reliab. 152, 115296 (2024).
Chen, D. et al. Repairable polymer solid electrolyte gated MoS2 field effect devices with large radiation tolerance. Adv. Electron. Mater. 8, 2100619 (2022).
He, Z. Y. et al. Defect engineering in single-layer MoS2 using heavy ion irradiation. ACS Appl. Mater. Interfaces 10, 42524–42533 (2018).
Su, S. H. & Xue, J. M. Facile fabrication of subnanopores in graphene under ion irradiation: molecular dynamics simulations. ACS Appl. Mater. Interfaces 13, 12366–12374 (2021).
Ghorbani-Asl, M., Kretschmer, S., Spearot, D. E. & Krasheninnikov, A. V. Two-dimensional MoS2 under ion irradiation: from controlled defect production to electronic structure engineering. 2D Mater. 4, 025078 (2017).
Yin, K. D. et al. Generating sub-nanometer pores in single-layer MoS2 by heavy-ion bombardment for gas separation: A theoretical perspective. ACS Appl. Mater. Interfaces 10, 28909–28917 (2018).
Fischer, M. et al. Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering. Sci. Adv. 7, eabe7138 (2021).
Gupta, S., Periasamy, P. & Narayanan, B. Defect dynamics in two-dimensional black phosphorus under argon ion irradiation. Nanoscale 13, 8575–8590 (2021).
Teodoro, L. et al. in From Habitability to Life on Mars (eds Cabrol, N. A. & Grin, E. A.) 211–231 (Elsevier, 2018).
Fano, U. Penetration of protons, alpha particles, and mesons. Annu. Rev. Nucl. Sci. 13, 1–66 (1963).
Torrens, I. M. & Robinson, M. T. in Radiation-induced Voids in Metals (eds Corbett, J. W. & Ianniello, L. C.) 739–756 (U.S. Atomic Energy Commission, 1972).
Norgett, M. J., Robinson, M. T. & Torrens, I. M. A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975).
Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping and Range of Ions in Solids 1st edn (Pergamon Press, 1985).

