Thursday, May 22, 2025
No menu items!
HomeNatureQuasar radiation transforms the gas in a merging companion galaxy

Quasar radiation transforms the gas in a merging companion galaxy

  • Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 31, 473–521 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 365–408 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, X.-B. et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, C. et al. The accretion of a solar mass per day by a 17-billion solar mass black hole. Nat. Astron. 8, 520–529 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and quasar activity. Astrophys. J. Suppl. Ser. 175, 356–389 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Ellison, S. L., Patton, D. R., Mendel, J. T. & Scudder, J. M. Galaxy pairs in the Sloan Digital Sky Survey. IV. Interactions trigger active galactic nuclei. Mon. Not. R. Astron. Soc. 418, 2043–2053 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Trakhtenbrot, B. et al. ALMA observations show major mergers among the host galaxies of fast-growing, high-redshift supermassive black holes. Astrophys. J. 836, 8 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Decarli, R. et al. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6. Nature 545, 457–461 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goulding, A. D. et al. Galaxy interactions trigger rapid black hole growth: an unprecedented view from the Hyper Suprime-Cam survey. Publ. Astron. Soc. Jpn 70, S37 (2018).

    Article 

    Google Scholar
     

  • Fogasy, J., Knudsen, K. K., Drouart, G., Lagos, C. D. P. & Fan, L. SMM J04135+10277: a distant QSO-starburst system caught by ALMA. Mon. Not. R. Astron. Soc. 493, 3744–3756 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hopkins, P. F. & Elvis, M. Quasar feedback: more bang for your buck. Mon. Not. R. Astron. Soc. 401, 7–14 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Dubois, Y. et al. The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback. Mon. Not. R. Astron. Soc. 463, 3948–3964 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pontzen, A. et al. How to quench a galaxy. Mon. Not. R. Astron. Soc. 465, 547–558 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moiseev, A. V. & Smirnova, A. A. Ionizing spotlight of active galactic nucleus. Galaxies 11, 118 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hirschmann, M., Somerville, R. S., Naab, T. & Burkert, A. Origin of the antihierarchical growth of black holes. Mon. Not. R. Astron. Soc. 426, 237–257 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Tang, S. et al. Morphological asymmetries of quasar host galaxies with Subaru Hyper Suprime-Cam. Mon. Not. R. Astron. Soc. 521, 5272–5297 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Noterdaeme, P. et al. Proximate molecular quasar absorbers. Excess of damped H2 systems at zabs ≈ zQSO in SDSS DR14. Astron. Astrophys. 627, A32 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Popesso, P. et al. The main sequence of star-forming galaxies across cosmic times. Mon. Not. R. Astron. Soc. 519, 1526–1544 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rahmati, A. & Schaye, J. Predictions for the relation between strong Hi absorbers and galaxies at redshift 3. Mon. Not. R. Astron. Soc. 438, 529–547 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Noterdaeme, P. et al. A connection between extremely strong damped Lyman-α systems and Lyman-α emitting galaxies at small impact parameters. Astron. Astrophys. 566, A24 (2014).

    Article 

    Google Scholar
     

  • Krogager, J. K., Møller, P., Fynbo, J. P. U. & Noterdaeme, P. Consensus report on 25 yr of searches for damped Ly α galaxies in emission: confirming their metallicity-luminosity relation at z 2. Mon. Not. R. Astron. Soc. 469, 2959–2981 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krogager, J.-K. et al. High-redshift damped Ly α absorbing galaxy model reproducing the NH iZ distribution. Mon. Not. R. Astron. Soc. 495, 3014–3021 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Di Matteo, T., Croft, R. A. C., Springel, V. & Hernquist, L. The cosmological evolution of metal enrichment in quasar host galaxies. Astrophys. J. 610, 80–92 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Ledoux, C., Petitjean, P., Fynbo, J. P. U., Møller, P. & Srianand, R. Velocity-metallicity correlation for high-z DLA galaxies: evidence of a mass-metallicity relation? Astron. Astrophys. 457, 71–78 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Balashev, S. A. et al. CO-dark molecular gas at high redshift: very large H2 content and high pressure in a low-metallicity damped Lyman alpha system. Mon. Not. R. Astron. Soc. 470, 2890–2910 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ranjan, A. et al. Molecular gas and star formation in an absorption-selected galaxy: hitting the bull’s eye at z  2.46. Astron. Astrophys. 618, A184 (2018).

    Article 

    Google Scholar
     

  • Balashev, S. A. et al. X-shooter observations of strong H2-bearing DLAs at high redshift. Mon. Not. R. Astron. Soc. 490, 2668–2678 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shull, J. M., Danforth, C. W. & Anderson, K. L. A far ultraviolet spectroscopic explorer survey of interstellar molecular hydrogen in the Galactic disk. Astrophys. J. 911, 55 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boissé, P. et al. A far UV study of interstellar gas towards HD 34078: high excitation H2 and small scale structure. Astron. Astrophys. 429, 509–523 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Urrutia, T., Lacy, M. & Becker, R. H. Evidence for quasar activity triggered by galaxy mergers in HST observations of dust-reddened quasars. Astrophys. J. 674, 80–96 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Glikman, E. et al. Major mergers host the most-luminous red quasars at z ~ 2: a Hubble Space Telescope WFC3/IR study. Astrophys. J. 806, 218 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hennebelle, P. & Falgarone, E. Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012).

    Article 
    ADS 

    Google Scholar
     

  • McCourt, M., Oh, S. P., O’Leary, R. & Madigan, A.-M. A characteristic scale for cold gas. Mon. Not. R. Astron. Soc. 473, 5407–5431 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arav, N., Barlow, T. A., Laor, A. & Blandford, R. D. Keck high-resolution spectroscopy of MRK 335: constraints on the number of emitting clouds in the broad-line region. Mon. Not. R. Astron. Soc. 288, 1015–1021 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Balashev, S. A. & Noterdaeme, P. Molecular hydrogen in absorption at high redshifts. Exp. Astron. 55, 223–239 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kosenko, D. N., Balashev, S. A. & Klimenko, V. V. Cold diffuse interstellar medium of Magellanic Clouds. II. Physical conditions from excitation of C i and H2. Mon. Not. R. Astron. Soc. 528, 5065–5079 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Noterdaeme, P. et al. Proximate molecular quasar absorbers. Chemical enrichment and kinematics of the neutral gas. Astron. Astrophys. 673, A89 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hunter, T. R. et al. The ALMA interferometric pipeline heuristics. Publ. Astron. Soc. Pac. 135, 074501 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tanaka, M. et al. Hyper Suprime-Cam legacy archive. Publ. Astron. Soc. Jpn 73, 735–746 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Serra, P. et al. SOFIA: a flexible source finder for 3D spectral line data. Mon. Not. R. Astron. Soc. 448, 1922–1929 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Westmeier, T. et al. SOFIA 2 – an automated, parallel H i source finding pipeline for the WALLABY survey. Mon. Not. R. Astron. Soc. 506, 3962–3976 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with Bagpipes: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carnall, A. C. et al. How to measure galaxy star formation histories. I. Parametric models. Astrophys. J. 873, 44 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. Astrophys. J. 657, 810–837 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Solomon, P. M. & Vanden Bout, P. A. Molecular gas at high redshift. Annu. Rev. Astron. Astrophys. 43, 677–725 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boogaard, L. A. et al. The ALMA spectroscopic survey in the Hubble ultra deep field: CO excitation and atomic carbon in star-forming galaxies at z = 1–3. Astrophys. J. 902, 109 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sargent, M. T. et al. Regularity underlying complexity: a redshift-independent description of the continuous variation of galaxy-scale molecular gas properties in the mass-star formation rate plane. Astrophys. J. 793, 19 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Calistro Rivera, G. et al. Resolving the ISM at the peak of cosmic star formation with ALMA: the distribution of CO and dust continuum in z ~ 2.5 submillimeter galaxies. Astrophys. J. 863, 56 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zahid, H. J., Geller, M. J., Fabricant, D. G. & Hwang, H. S. The scaling of stellar mass and central stellar velocity dispersion for quiescent galaxies at z < 0.7. Astrophys. J. 832, 203 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 422, 478–493 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Selsing, J., Fynbo, J. P. U., Christensen, L. & Krogager, J. K. An X-shooter composite of bright 1 < z < 2 quasars from UV to infrared. Astron. Astrophys. 585, A87 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J., Hall, P. B., Ge, J., Li, A. & Schneider, D. P. Detections of the 2175 Å dust feature at 1.4 < z < 1.5 from the Sloan Digital Sky Survey. Astrophys. J. 609, 589–596 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Srianand, R., Gupta, N., Petitjean, P., Noterdaeme, P. & Saikia, D. J. Detection of the 2175 Å extinction feature and 21-cm absorption in two Mg ii systems at z ~ 1.3. Mon. Not. R. Astron. Soc. 391, L69–L73 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. et al. Seven broad absorption line quasars with excess broadband absorption near 2250 Å. Astrophys. J. 802, 92 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Noterdaeme, P. et al. Discovery of a Perseus-like cloud in the early Universe. H i-to-H2 transition, carbon monoxide and small dust grains at zabs ≈ 2.53 towards the quasar J0000+0048. Astron. Astrophys. 597, A82 (2017).

    Article 

    Google Scholar
     

  • Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A quantitative comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way ultraviolet to near-infrared extinction curves. Astrophys. J. 594, 279–293 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hamann, F. et al. Extremely red quasars in BOSS. Mon. Not. R. Astron. Soc. 464, 3431–3463 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Veilleux, S. et al. The surprising absence of absorption in the far-ultraviolet spectrum of Mrk 231. Astrophys. J. 764, 15 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Bergeron, J. & Boissé, P. Extent and structure of intervening absorbers from absorption lines redshifted on quasar emission lines. Astron. Astrophys. 604, A37 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Lacour, S. et al. Velocity dispersion of the high rotational levels of H2. Astrophys. J. 627, 251–262 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Noterdaeme, P. et al. Excitation mechanisms in newly discovered H2-bearing damped Lyman-α clouds: systems with low molecular fractions. Astron. Astrophys. 474, 393–407 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Balashev, S. A., Varshalovich, D. A. & Ivanchik, A. V. Directional radiation and photodissociation regions in molecular hydrogen clouds. Astron. Lett. 35, 150–166 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Noterdaeme, P. et al. Down-the-barrel observations of a multi-phase quasar outflow at high redshift. VLT/X-shooter spectroscopy of the proximate molecular absorber at z = 2.631 towards SDSS J001514+184212. Astron. Astrophys. 646, A108 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kosenko, D. N. et al. HD molecules at high redshift: cosmic ray ionization rate in the diffuse interstellar medium. Mon. Not. R. Astron. Soc. 505, 3810–3822 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Noterdaeme, P. et al. Spotting high-z molecular absorbers using neutral carbon. Results from a complete spectroscopic survey with the VLT. Astron. Astrophys. 612, A58 (2018).

    Article 

    Google Scholar
     

  • Balashev, S. A. & Kosenko, D. N. Neutral carbon in diffuse interstellar medium: abundance matching with H2 for damped Lyman alpha systems at high redshifts. Mon. Not. R. Astron. Soc. 527, 12109–12119 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Schroder, K., Staemmler, V., Smith, M. D., Flower, D. R. & Jaquet, R. Excitation of the fine-structure transitions of C in collisions with ortho- and para-H2. J. Phys. B: At. Mol. Phys. 24, 2487–2502 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Abrahamsson, E., Krems, R. V. & Dalgarno, A. Fine-structure excitation of O i and C i by impact with atomic hydrogen. Astrophys. J. 654, 1171–1174 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Staemmler, V. & Flower, D. R. Excitation of the C(2p2. 3Pj) fine structure states in collisions with He(1s2 1S0). J. Phys. B: At. Mol. Phys. 24, 2343–2351 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Le Petit, F., Nehmé, C., Le Bourlot, J. & Roueff, E. A model for atomic and molecular interstellar gas: the Meudon PDR code. Astrophys. J. Suppl. Ser. 164, 506–529 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Klimenko, V. V. & Balashev, S. A. Physical conditions in the diffuse interstellar medium of local and high-redshift galaxies: measurements based on the excitation of H2 rotational and C i fine-structure levels. Mon. Not. R. Astron. Soc. 498, 1531–1549 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sternberg, A., Le Petit, F., Roueff, E. & Le Bourlot, J. H i-to-H2 transitions and H i column densities in galaxy star-forming regions. Astrophys. J. 790, 10 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Bialy, S. & Sternberg, A. Analytic H i-to-H2 photodissociation transition profiles. Astrophys. J. 822, 83 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Astropy Collaboration. et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradley, L. et al. astropy/photutils: 1.12.0. Zenodo https://doi.org/10.5281/zenodo.10967176 (2024).

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments