Wednesday, October 8, 2025
No menu items!
HomeNatureQuantum-amplified global-phase spectroscopy on an optical clock transition

Quantum-amplified global-phase spectroscopy on an optical clock transition

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ushijima, I., Takamoto, M., Das, M., Ohkubo, T. & Katori, H. Cryogenic optical lattice clocks. Nat. Photon. 9, 185–189 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schioppo, M. et al. Ultrastable optical clock with two cold-atom ensembles. Nat. Photon. 11, 48–52 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, J. et al. A strontium lattice clock with both stability and uncertainty below 5 × 10−18. Metrologia 61, 015006 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Robinson, J. M. et al. Direct comparison of two spin-squeezed optical clock ensembles at the 10−17 level. Nat. Phys. 20, 208–213 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Differential clock comparisons with a multiplexed optical lattice clock. Nature 602, 425–430 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2, 020343 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, A. et al. Multi-qubit gates and Schrödinger cat states in an optical clock. Nature 634, 315–320 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fröwis, F., Sekatski, P. & Dür, W. Detecting large quantum Fisher information with finite measurement precision. Phys. Rev. Lett. 116, 090801 (2016).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Sjöqvist, E. Nonadiabatic holonomic single-qubit gates in off-resonant Λ systems. Phys. Lett. A 380, 65–67 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Aharonov, Y. & Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, K. & Zoller, P. Quantum variational optimization of Ramsey interferometry and atomic clocks. Phys. Rev. X 11, 041045 (2021).

    CAS 

    Google Scholar
     

  • Liu, Q. et al. Enhancing dynamic range of sub-standard-quantum-limit measurements via quantum deamplification. Phys. Rev. Lett. 135, 040801 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marciniak, C. D. et al. Optimal metrology with programmable quantum sensors. Nature 603, 604–609 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehlstäubler, T. E., Grosche, G., Lisdat, C., Schmidt, P. O. & Denker, H. Atomic clocks for geodesy. Rep. Prog. Phys. 81, 064401 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sanner, C. et al. Optical clock comparison for Lorentz symmetry testing. Nature 567, 204–208 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, C. et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574–577 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Finkelstein, R. et al. Universal quantum operations and ancilla-based read-out for tweezer clocks. Nature 634, 321–327 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, H. et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature 581, 159–163 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anders, F. et al. Momentum entanglement for atom interferometry. Phys. Rev. Lett. 127, 140402 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sewell, R. J. et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Muessel, W., Strobel, H., Linnemann, D., Hume, D. B. & Oberthaler, M. K. Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. Phys. Rev. Lett. 113, 103004 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cassens, C., Meyer-Hoppe, B., Rasel, E. & Klempt, C. Entanglement-enhanced atomic gravimeter. Phys. Rev. X 15, 011029 (2025).

    CAS 

    Google Scholar
     

  • Kruse, I. et al. Improvement of an atomic clock using squeezed vacuum. Phys. Rev. Lett. 117, 143004 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolan, S. P., Szigeti, S. S. & Haine, S. A. Optimal and robust quantum metrology using interaction-based readouts. Phys. Rev. Lett. 119, 193601 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hosten, O., Krishnakumar, R., Engelsen, N. J. & Kasevich, M. A. Quantum phase magnification. Science 352, 1552–1555 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Linnemann, D. et al. Quantum-enhanced sensing based on time reversal of nonlinear dynamics. Phys. Rev. Lett. 117, 013001 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilmore, K. A. et al. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals. Science 373, 673–678 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Colombo, S. et al. Time-reversal-based quantum metrology with many-body entangled states. Nature Physics 18, 925–930 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. Squeezing the collective spin of a dilute atomic ensemble by cavity feedback. Phys. Rev. A 81, 021804 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Braverman, B. et al. Near-unitary spin squeezing in 171Yb. Phys. Rev. Lett. 122, 223203 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bishof, M., Zhang, X., Martin, M. J. & Ye, J. Optical spectrum analyzer with quantum-limited noise floor. Phys. Rev. Lett. 111, 093604 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Solomon, I. Rotary spin echoes. Phys. Rev. Lett. 2, 301–302 (1959).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blatt, S. et al. Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock. Phys. Rev. A 80, 052703 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the Dick limit. Nat. Photon. 5, 288–292 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s. Phys. Rev. Lett. 109, 230801 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Riehle, F. Optical clock networks. Nat. Photon. 11, 25–31 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Multiparameter estimation with an array of entangled atomic sensors. Preprint at https://arxiv.org/abs/2504.08677 (2025).

  • Malia, B. K., Wu, Y., Martínez-Rincón, J. & Kasevich, M. A. Distributed quantum sensing with mode-entangled spin-squeezed atomic states. Nature 612, 661–665 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dzuba, V. A. et al. Strongly enhanced effects of Lorentz symmetry violation in entangled Yb+ ions. Nat. Phys. 12, 465–468 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z., Carrasco, S. C., Sanner, C., Malinovsky, V. S. & Folman, R. Geometric phase amplification in a clock interferometer for enhanced metrology. Sci. Adv. 11, eadr6893 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koczor, B., Zeier, R. & Glaser, S. J. Fast computation of spherical phase-space functions of quantum many-body states. Phys. Rev. A 102, 062421 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments