Thursday, August 21, 2025
No menu items!
HomeNatureQuantitative imaging of lipid transport in mammalian cells

Quantitative imaging of lipid transport in mammalian cells

  • Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. & Burd, C. G. Lipid Sorting and organelle identity. Cold Spring Harb. Perspect. Biol. 15, a041397 (2023).

    PubMed 

    Google Scholar
     

  • Moon, H., Iglesias-Artola, J. M., Hersemann, L. & Nadler, A. Lipid imaging: quantitative imaging of species-specific lipid transport in mammalian cells. https://doi.org/21.11101/0000-0007-FCE5-B (Max Planck Institute of Molecular Cell Biology and Genetics, 2025).

  • Klose, C., Surma, M. A. & Simons, K. Organellar lipidomics—background and perspectives. Curr. Opin. Cell Biol. 25, 406–413 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sampaio, J. L. et al. Membrane lipidome of an epithelial cell line. Proc. Natl Acad. Sci. USA 108, 1903–1907 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holthuis, J. C. M. & Menon, A. K. Lipid landscapes and pipelines in membrane homeostasis. Nature 510, 48–57 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reinisch, K. M. & Prinz, W. A. Mechanisms of nonvesicular lipid transport. J. Cell Biol. 220, e202012058 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koivusalo, M., Jansen, M., Somerharju, P. & Ikonen, E. Endocytic trafficking of sphingomyelin depends on its acyl chain length. MBoC 18, 5113–5123 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haberkant, P. & Holthuis, J. C. M. Fat & fabulous: bifunctional lipids in the spotlight. Biochim. Biophys. Acta 1841, 1022–1030 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Höglinger, D. et al. Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proc. Natl Acad. Sci. USA 114, 1566–1571 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haberkant, P. et al. In vivo profiling and visualization of cellular protein-lipid interactions using bifunctional fatty acids. Angew. Chem. Int. Ed. 52, 4033–4038 (2013).

    CAS 

    Google Scholar
     

  • Höglinger, D. in Intracellular Lipid Transport. Methods in Molecular Biology Vol. 1949 (ed. Drin, G.) 95–103 (Humana Press, 2019); https://doi.org/10.1007/978-1-4939-9136-5_8.

  • Altuzar, J. et al. Lysosome-targeted multifunctional lipid probes reveal the sterol transporter NPC1 as a sphingosine interactor. Proc. Natl Acad. Sci. USA 120, e2213886120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farley, S., Stein, F., Haberkant, P., Tafesse, F. G. & Schultz, C. Trifunctional sphinganine: a new tool to dissect sphingolipid function. ACS Chem. Biol. 19, 336–347 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuhmacher, M. et al. Live-cell lipid biochemistry reveals a role of diacylglycerol side-chain composition for cellular lipid dynamics and protein affinities. Proc. Natl Acad. Sci. USA 117, 7729–7738 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höglinger, D., Nadler, A. & Schultz, C. Caged lipids as tools for investigating cellular signaling. Biochim. Biophys. Acta 1841, 1085–1096 (2014).

    PubMed 

    Google Scholar
     

  • Jiménez-López, C. & Nadler, A. Caged lipid probes for controlling lipid levels on subcellular scales. Curr. Opin. Chem. Biol. 72, 102234 (2023).

    PubMed 

    Google Scholar
     

  • Frank, J. A. et al. Photoswitchable diacylglycerols enable optical control of protein kinase C. Nat. Chem. Biol. 12, 755 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morstein, J., Impastato, A. C. & Trauner, D. Photoswitchable lipids. ChemBioChem 22, 73–83 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Haldar, S. & Chattopadhyay, A. in Fluorescent Methods to Study Biological Membranes (eds Mély, Y. & Duportail, G.) 37–50 (Springer, 2013); https://doi.org/10.1007/4243_2012_43.

  • Klymchenko, A. S. & Kreder, R. Fluorescent probes for lipid rafts: from model membranes to living cells. Chem. Biol. 21, 97–113 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Triebl, A. & Wenk, M. R. Analytical considerations of stable isotope labelling in lipidomics. Biomolecules 8, 151 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Postle, A. D. & Hunt, A. N. Dynamic lipidomics with stable isotope labelling. J. Chromatogr. B 877, 2716–2721 (2009).

    CAS 

    Google Scholar
     

  • Thiele, C. et al. Tracing fatty acid metabolism by click chemistry. ACS Chem. Biol. 7, 2004–2011 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Thiele, C., Wunderling, K. & Leyendecker, P. Multiplexed and single cell tracing of lipid metabolism. Nat. Methods 16, 1123–1130 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wunderling, K., Zurkovic, J., Zink, F., Kuerschner, L. & Thiele, C. Triglyceride cycling enables modification of stored fatty acids. Nat. Metab. 5, 699–709 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koukalová, A. et al. Lipid driven nanodomains in giant lipid vesicles are fluid and disordered. Sci. Rep. 7, 5460 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarmento, M. J. et al. The impact of the glycan headgroup on the nanoscopic segregation of gangliosides. Biophys. J. 120, 5530–5543 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G. et al. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. Proc. Natl Acad. Sci. USA 113, 14025–14030 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Merrill, A. H. Jr Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev. 111, 6387–6422 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Titeca, K. et al. A system-wide analysis of lipid transfer proteins delineates lipid mobility in human cells. Preprint at bioRxiv https://doi.org/10.1101/2023.12.21.572821 (2023).

  • Chang, C.-L. & Liou, J. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. J. Biol. Chem. 290, 14289–14301 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lees, J. A. & Reinisch, K. M. Inter-organelle lipid transfer: a channel model for Vps13 and chorein-N motif proteins. Curr. Opin. Cell Biol. 65, 66–71 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanna, M., Guillén-Samander, A. & Camilli, P. D. RBG motif bridge-like lipid transport proteins: structure, functions, and open questions. Ann. Rev. Cell Dev. Biol. 39, 409–434 (2023).

    CAS 

    Google Scholar
     

  • Guillén-Samander, A. et al. A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Proc. Natl Acad. Sci. USA 119, e2205425119 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. E. et al. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. J. Cell Biol. 220, e202103105 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorent, J. H. et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Velden, L. M. et al. Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases*. J. Biol. Chem. 285, 40088–40096 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryde, S. et al. CDC50 proteins are critical components of the human class-1 P 4-ATPase transport machinery. J. Biol. Chem. 285, 40562–40572 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harayama, T. Metabolic bias: Lipid structures as determinants of their metabolic fates. Biochimie 215, 34–41 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Vance, J. E., Aasman, E. J. & Szarka, R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J. Biol. Chem. 266, 8241–8247 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Kaplan, M. R. & Simoni, R. D. Intracellular transport of phosphatidylcholine to the plasma membrane. J. Cell Biol. 101, 441–445 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Wong, L. H., Čopič, A. & Levine, T. P. Advances on the transfer of lipids by lipid transfer proteins. Trends Biochem. Sci 42, 516–530 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farley, S. E. et al. Trifunctional fatty acid derivatives: the impact of diazirine placement. Chem. Commun. 60, 6651–6654 (2024).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments