Wednesday, December 31, 2025
No menu items!
HomeNatureQuantifying the global eco-footprint of wearable healthcare electronics

Quantifying the global eco-footprint of wearable healthcare electronics

  • Shi, J. et al. Active biointegrated living electronics for managing inflammation. Science 384, 1023–1030 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat. Med. 29, 1623–1630 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musk, E. An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, E. Environmental effects of information and communications technologies. Nature 479, 354–358 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, H. H. et al. Sustainable electronic textiles towards scalable commercialization. Nat. Mater. 22, 1294–1303 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. How much energy will AI really consume? The good, the bad and the unknown. Nature 639, 22–24 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. J., Koo, J. H., Lee, S., Hyeon, T. & Kim, D.-H. Materials design and integration strategies for soft bioelectronics in digital healthcare. Nat. Rev. Mater. 10, 654–673 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Nikolka, M., Göke, S., Burkacky, O., Spiller, P. & Patel, M. Unlocking net-zero in semiconductor manufacturing. Nat. Rev. Electr. Eng. 1, 487–488 (2024).

    Article 

    Google Scholar
     

  • McCulloch, I., Chabinyc, M., Brabec, C., Nielsen, C. B. & Watkins, S. E. Sustainability considerations for organic electronic products. Nat. Mater. 22, 1304–1310 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • The Global E-Waste Monitor 2024–Electronic Waste Rising Five Times Faster than Documented e-Waste Recycling (United Nations, 2024); https://ewastemonitor.info/wp-content/uploads/2024/12/GEM_2024_EN_11_NOV-web.pdf.

  • Yang, Q. et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nat. Electron. 5, 526–538 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, H. et al. Novel eco-friendly starch paper for use in flexible, transparent and disposable organic electronics. Adv. Funct. Mater. 28, 1704433–1704442 (2018).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Recyclable vitrimer-based printed circuit boards for sustainable electronics. Nat. Sustain. 7, 616–627 (2024).

    Article 

    Google Scholar
     

  • Vũ, N. Đ et al. Gallium-catalyzed recycling of silicone waste with boron trichloride to yield key chlorosilanes. Science 388, 392–400 (2025).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Organic flexible electronics with closed-loop recycling for sustainable wearable technology. Nat. Electron. 7, 39–50 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Corzo, D. et al. High-performing organic electronics using terpene green solvents from renewable feedstocks. Nat. Energy 8, 62–73 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Min, J. et al. An autonomous wearable biosensor powered by a perovskite solar cell. Nat. Electron. 6, 630–641 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordella, M., Alfieri, F. & Sanfelix, J. Reducing the carbon footprint of ICT products through material efficiency strategies: a life cycle analysis of smartphones. J. Ind. Ecol. 25, 448–464 (2021).

    Article 

    Google Scholar
     

  • Peng, P. & Shehabi, A. Regional economic potential for recycling consumer waste electronics in the United States. Nat. Sustain. 6, 93–102 (2023).

    Article 

    Google Scholar
     

  • Moni, S. M., Mahmud, R., High, K. & Carbajales-Dale, M. Life cycle assessment of emerging technologies: a review. J. Ind. Ecol. 24, 52–63 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Strazza, C. et al. Technology Readiness Level—Guidance Principles for Renewable Energy Technologies Final Report (European Commission, Directorate-General for Research and Innovation, 2017).

  • Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).

    Article 

    Google Scholar
     

  • Dexcom G6 CGM system for personal use. Dexcom https://provider.dexcom.com/products/g6-personal-cgm (2025).

  • Williams, E. D., Ayres, R. U. & Heller, M. The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices. Environ. Sci. Technol. 36, 5504–5510 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Pencil–paper on-skin electronics. Proc. Natl Acad. Sci. USA 117, 18292–18301 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonnassieux, Y. et al. The 2021 flexible and printed electronics roadmap. Flex. Print. Electron. 6, 023001 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schaubroeck, T. et al. Attributional & consequential life cycle assessment: definitions, conceptual characteristics and modelling restriction. Sustainability 13, 7386–7433 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Norgate, T. & Haque, N. Using life cycle assessment to evaluate some environmental impacts of gold production. J. Clean. Prod. 29–30, 53–63 (2012).

    Article 

    Google Scholar
     

  • Bigum, M., Damgaard, A., Scheutz, C. & Christensen, T. H. Environmental impacts and resource losses of incinerating misplaced household special wastes (WEEE, batteries, ink cartridges and cables). Resour. Conserv. Recycl. 122, 251–260 (2017).

    Article 

    Google Scholar
     

  • Global smartphone market soared 7% in 2024 as vendors prepare for tricky 2025. canalys.com https://canalys.com/newsroom/worldwide-smartphone-market-2024 (2025).

  • Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feig, V. R., Tran, H. & Bao, Z. Biodegradable polymeric materials in degradable electronic devices. ACS Cent. Sci. 4, 337–348 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujisaki, Y. et al. Transparent nanopaper-based flexible organic thin-film transistor array. Adv. Funct. Mater. 24, 1657–1663 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Material property data. MatWeb https://www.matweb.com/index.aspx (2025).

  • Fan, Z.-J. et al. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5, 191–198 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Worfolk, B. J. et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl Acad. Sci. USA 112, 14138–14143 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H., Liu, D., Yang, J., Gao, H. & Wu, Y. Flexible electronics based on organic semiconductors: from patterned assembly to integrated applications. Small 19, 2206938 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chu, M. et al. Co-recycling of plastics and other waste materials. Nat. Rev. Clean Technol. 1, 320–332 (2025).

    Article 

    Google Scholar
     

  • Dai, Y. et al. Soft hydrogel semiconductors with augmented biointeractive functions. Science 386, 431–439 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piao, Z., Agyei Boakye, A. A. & Yao, Y. Environmental impacts of biodegradable microplastics. Nat. Chem. Eng. 1, 661–669 (2024).

    Article 

    Google Scholar
     

  • Peng, J. et al. Surface coordination layer passivates oxidation of copper. Nature 586, 390–394 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, E. L. et al. Directed evolution of an efficient and thermostable PET depolymerase. Nat. Catal. 5, 673–681 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sacchi, R. et al. Prospective environmental impact assement (premise): a streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models. Renew. Sustain. Energy Rev. 160, 112311 (2022).

    Article 

    Google Scholar
     

  • Yoshimoto, M. & Izumi, S. Recent progress of biomedical processor SoC for wearable healthcare application: a review. IEICE Trans. Electron. 102, 245–259 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Malmodin, J. & Lundén, D. The energy and carbon footprint of the global ICT and E&M sectors. Sustainability 10, 3027–3057 (2018).

  • Ercan M., Malmodin J., Bergmark P., Kimfalk E., & Nilsson E. Life cycle assessment of a smartphone. In Proc. ICT for Sustainability 2016 124–133 (Atlantis Press, 2016).

  • Suckling, J. & Lee, J. Redefining scope: the true environmental impact of smartphones? Int. J. Life Cycle Assess. 20, 1181–1196 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Life cycle assessment (LCA) of circular consumer electronics based on IC recycling and emerging PCB assembly materials. Sci. Rep. 14, 29183 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M. et al. Towards sustainable perovskite light-emitting diodes. Nat. Sustain. 8, 315–324 (2025).

    Article 

    Google Scholar
     

  • Yang, C. et al. A bioinspired permeable junction approach for sustainable device microfabrication. Nat. Sustain. 7, 1190–1203 (2024).

    Article 

    Google Scholar
     

  • Li, P. et al. Monolithic silicon for high spatiotemporal translational photostimulation. Nature 626, 990–998 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malmodin J. & Lövehagen N. A methodology for simplified LCAs of electronic products. In 2024 Electronics Goes Green 2024+ (EGG) 1–12 (IEEE, 2024).

  • Zhang, Z. et al. DeltaLCA: comparative life-cycle assessment for electronics design. In Proc. ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 8, 1–29 (ACM, 2024).

  • Teer J. & Bertolini M. Reaching Breaking Point: The Semiconductor and Critical Raw Material Ecosystem at a Time of Great Power Rivalry (The Hague Centre for Strategic Studies, 2022); https://hcss.nl/wp-content/uploads/2022/10/Reaching-breaking-point-full-HCSS-2022-revised.pdf.

  • Pizzol, M. et al. Normalisation and weighting in life cycle assessment: quo vadis?. Int. J. Life Cycle Assess. 22, 853–866 (2017).

    Article 

    Google Scholar
     

  • Wang, B., Tian, X., Stranks, S. D. & You, F. Transitioning photovoltaics to all-perovskite tandems reduces 2050 climate change impacts of PV sector by 16%. Environ. Sci. Technol. 59, 9540–9551 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bass, F. M. A new product growth for model consumer durables. Manag. Sci. 50, 1825–1832 (2004).

    Article 

    Google Scholar
     

  • Kaminski, J. Diffusion of innovation theory: theory in nursing informatics column. Can. J. Nurs. Inform. 6, 1–6 (2011).

  • Norton, J. A. & Bass, F. M. A diffusion theory model of adoption and substitution for successive generations of high-technology products. Manag. Sci. 33, 1069–1086 (1987).

    Article 

    Google Scholar
     

  • Sultan, F., Farley, J. U. & Lehmann, D. R. A meta-analysis of applications of diffusion models. J. Mark. Res. 27, 70–77 (1990).

    Article 

    Google Scholar
     

  • Managing Complications in Pregnancy and Childbirth: A Guide for Midwives and Doctors (World Health Organization, 2003).

  • Zhou, B. et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).

    Article 

    Google Scholar
     

  • Cardiovascular diseases (CVDs). WHO https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (2021).

  • Papolos, A., Narula, J., Bavishi, C., Chaudhry, F. A. & Sengupta, P. P. U.S. hospital use of echocardiography: insights from the nationwide inpatient sample. J. Am. Coll. Cardiol. 67, 502–511 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Pawar P. Apple Watch statistics by revenue, sales, series, market share, country, users and usage. Coolest Gadgets https://www.coolest-gadgets.com/apple-watches-statistics/ (2023).

  • Forti, V., Baldé, K. & Kuehr, R. E-waste Statistics: Guidelines on Classifications, Reporting and Indicators (United Nations Univ., 2018).

  • Electrical and Electronic Equipment Placed on Market Calculation Tool Manual (UNITAR, 2023); https://academy-ce.info/wp-content/uploads/2024/02/ENG-EEE-POM-calculation-tool-manual.pdf.

  • Miller, T. R., Duan, H., Gregory, J., Kahhat, R. & Kirchain, R. Quantifying domestic used electronics flows using a combination of material flow methodologies: a US case study. Environ. Sci. Technol. 50, 5711–5719 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weibull formulas. What are the basic lifetime distribution models used for non-repairable populations? NIST https://www.itl.nist.gov/div898/handbook/apr/section1/apr162.htm?utm (2025).

  • Ciroth, A., Muller, S., Weidema, B. & Lesage, P. Empirically based uncertainty factors for the pedigree matrix in ecoinvent. Int. J. Life Cycle Assess. 21, 1338–1348 (2016).

    Article 

    Google Scholar
     

  • Uncertainties. Ecoinvent Support https://support.ecoinvent.org/uncertainties (2025).

  • Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8, 1953–1968 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Worrell, E. et al. Potentials and Policy Implications of Energy and Material Efficiency Improvement (United Nations, 1997).

  • Zio XT® long-term continuous monitoring service. iRhythm Technologies https://www.irhythmtech.com/us/en/solutions-services/irhythm-service/zio-xt (2025).

  • Aktiia 24/7. Blood pressure monitor. Aktiia https://aktiia.com/uk/blood-pressure-monitor (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments