Thursday, December 11, 2025
No menu items!
HomeNatureQuantifying grain boundary deformation mechanisms in small-grained metals

Quantifying grain boundary deformation mechanisms in small-grained metals

  • Legros, M., Elliott, B. R., Rittner, M. N., Weertman, J. R. & Hemker, K. J. Microsample tensile testing of nanocrystalline metals. Philos. Mag. A 80, 1017–1026 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rupert, T. J., Gianola, D. S., Gan, Y. & Hemker, K. J. Experimental observations of stress-driven grain boundary migration. Science 326, 1686–1690 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gianola, D. S. et al. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253–2263 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schäfer, J. & Albe, K. Competing deformation mechanisms in nanocrystalline metals and alloys: coupled motion versus grain boundary sliding. Acta Mater. 60, 6076–6085 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Cahn, J. W., Mishin, Y. & Suzuki, A. Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953–4975 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Han, J., Thomas, S. L. & Srolovitz, D. J. Grain-boundary kinetics: a unified approach. Prog. Mater. Sci. 98, 386–476 (2018).

    Article 

    Google Scholar
     

  • Chen, K., Han, J., Thomas, S. L. & Srolovitz, D. J. Grain boundary shear coupling is not a grain boundary property. Acta Mater. 167, 241–247 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hall, E. O. The deformation and ageing of mild steel: II characteristics of the Lüders deformation. Proc. Phys. Soc. Sect. B 64, 742–747 (1951).

    Article 
    ADS 

    Google Scholar
     

  • Petch, N. J. The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953).

    CAS 

    Google Scholar
     

  • Dunstan, D. J. & Bushby, A. J. The scaling exponent in the size effect of small scale plastic deformation. Int. J. Plast. 40, 152–162 (2013).

    Article 

    Google Scholar
     

  • Schuh, C. A., Nieh, T. G. & Yamasaki, T. Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Mater. 46, 735–740 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Shan, Z. et al. Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654–657 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baral, P. et al. Grain boundary-mediated plasticity in aluminum films unraveled by a statistical approach combining nano-DIC and ACOM-TEM. Acta Mater. 276, 120081 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tian, Y. et al. Grain rotation mechanisms in nanocrystalline materials: multiscale observations in Pt thin films. Science 386, 49–54 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y., Deng, H., Zhu, Q., Zhou, H. & Wang, J. Direct observation of disconnection-mediated grain rotation. Scr. Mater. 252, 116279 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Van Swygenhoven, H. & Derlet, P. M. Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Yu, Q., Legros, M. & Minor, A. M. In situ TEM nanomechanics. MRS Bull. 40, 62–70 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Legros, M., Gianola, D. S. & Hemker, K. J. In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 3380–3393 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, B. B., Tang, Y. G., Mei, Q. S., Li, X. Y. & Lu, K. Inhibiting creep in nanograined alloys with stable grain boundary networks. Science 378, 659–663 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Molodov, K. D. & Molodov, D. A. Grain boundary mediated plasticity: on the evaluation of grain boundary migration – shear coupling. Acta Mater. 153, 336–353 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hirth, J. P. & Pond, R. C. Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater. 44, 4749–4763 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Khater, H. A., Serra, A., Pond, R. C. & Hirth, J. P. The disconnection mechanism of coupled migration and shear at grain boundaries. Acta Mater. 60, 2007–2020 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gorkaya, T., Molodov, D. A. & Gottstein, G. Stress-driven migration of symmetrical〈100〉tilt grain boundaries in Al bicrystals. Acta Mater. 57, 5396–5405 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gottstein, G. & Shvindlerman, L. S. Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications 2nd edn (CRC Press, 2009).

  • Balluffi, R. W. & Cahn, J. W. Mechanism for diffusion induced grain boundary migration. Acta Metall. 29, 493–500 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Humphreys, F. J. & Hatherly, M. Recrystallization and Related Annealing Phenomena (Elsevier, 2012).

  • Bhattacharya, A. et al. Grain boundary velocity and curvature are not correlated in Ni polycrystals. Science 374, 189–193 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohrer, G. S. et al. Grain boundary migration in polycrystals. Annu. Rev. Mater. Res. 53, 347–369 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shiga, M. & Shinoda, W. Stress-assisted grain boundary sliding and migration at finite temperature: a molecular dynamics study. Phys. Rev. B 70, 054102 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Van Swygenhoven, H. & Weertman, J. R. Deformation in nanocrystalline metals. Mater. Today 9, 24–31 (2006).

    Article 

    Google Scholar
     

  • Olmsted, D. L., Holm, E. A. & Foiles, S. M. Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility. Acta Mater. 57, 3704–3713 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meyers, M. A., Mishra, A. & Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Mackenzie, J. K. Second paper on statistics associated with random disorientation of cubes. Biometrika 45, 229–240 (1958).

    Article 
    MathSciNet 

    Google Scholar
     

  • Rai, G. & Grant, N. J. Observations of grain boundary sliding during superplastic deformation. Metall. Trans. A 14, 1451–1458 (1983).

    Article 

    Google Scholar
     

  • Langdon, T. G. The physics of superplastic deformation. Mater. Sci. Eng. A 137, 1–11 (1991).

    Article 

    Google Scholar
     

  • Thomas, S. L., Chen, K., Han, J., Purohit, P. K. & Srolovitz, D. J. Reconciling grain growth and shear-coupled grain boundary migration. Nat. Commun. 8, 1764 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajabzadeh, A. et al. The role of disconnections in deformation-coupled grain boundary migration. Acta Mater. 77, 223–235 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rae, C. M. F. & Smith, D. A. On the mechanisms of grain boundary migration. Philos. Mag. A 41, 477–492 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Balluffi, R. W., Brokman, A. & King, A. H. CSL/DSC Lattice model for general crystalcrystal boundaries and their line defects. Acta Metall. 30, 1453–1470 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Gautier, R. et al. Shear-coupled migration of grain boundaries: the key missing link in the mechanical behavior of small-grained metals? C. R. Phys. 22, 19–34 (2021).

    Article 

    Google Scholar
     

  • Rajabzadeh, A., Mompiou, F., Legros, M. & Combe, N. Elementary mechanisms of shear-coupled grain boundary migration. Phys. Rev. Lett. 110, 265507 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Q. et al. In situ atomistic observation of disconnection-mediated grain boundary migration. Nat. Commun. 10, 156 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shariat, P., Vastava, R. B. & Langdon, T. G. An evaluation of the roles of intercrystalline and interphase boundary sliding in two-phase superplastic alloys. Acta Metall. 30, 285–296 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Sotoudeh, K. & Bate, P. S. Diffusion creep and superplasticity in aluminium alloys. Acta Mater. 58, 1909–1920 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mompiou, F. & Legros, M. Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films. Scr. Mater. 99, 5–8 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Grain boundary mobilities in polycrystals. Acta Mater. 191, 211–220 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bachmaier, A., Hafok, M. & Pippan, R. Rate independent and rate dependent structural evolution during severe plastic deformation. Mater. Trans. 51, 8–13 (2009).

    Article 

    Google Scholar
     

  • Gautier, R. et al. Shear coupled grain boundary migration: image and maps processing scripts. Zenodo https://zenodo.org/records/17130567 (2025).

  • Gautier, R. et al. Shear coupled grain boundary migration in Al UFG: data from EBSD, AFM and ACOM TEM. Zenodo https://doi.org/10.5281/zenodo.17190340 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments