Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).
Saher, S. et al. Trimodal thermal energy storage material for renewable energy applications. Nature 636, 622–626 (2024).
Gur, I., Sawyer, K. & Prasher, R. Searching for a better thermal battery. Science 335, 1454–1455 (2012).
Henry, A., Prasher, R. & Majumdar, A. Five thermal energy grand challenges for decarbonization. Nat. Energy 5, 635–637 (2020).
Thiel, G. P. & Stark, A. K. To decarbonize industry, we must decarbonize heat. Joule 5, 531–550 (2021).
Matuszek, K., Kar, M., Pringle, J. M. & MacFarlane, D. R. Phase change materials for renewable energy storage at intermediate temperatures. Chem. Rev. 123, 491–514 (2023).
Wang, G. et al. Phase change thermal storage materials for interdisciplinary applications. Chem. Rev. 123, 6953–7024 (2023).
Yang, T., King, W. P. & Miljkovic, N. Phase change material-based thermal energy storage. Cell Rep. Phys. Sci. 2, 100540 (2021).
Wu, S. et al. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31, 1905099 (2019).
Fu, W. et al. High power and energy density dynamic phase change materials using pressure-enhanced close contact melting. Nat. Energy 7, 270–280 (2022).
Kozak, Y., Rozenfeld, T. & Ziskind, G. Close-contact melting in vertical annular enclosures with a non-isothermal base: theoretical modeling and application to thermal storage. Int. J. Heat Mass Transf. 72, 114–127 (2014).
Wu, S., Zhang, X., Tang, K. & Li, T. Magnetically-regulated close contact melting for high-power-density latent heat energy storage. J. Energy Storage 95, 112660 (2024).
Dumont, O. et al. Carnot battery technology: a state-of-the-art review. J. Energy Storage 32, 101756 (2020).
Liang, T. et al. Key components for Carnot Battery: technology review, technical barriers and selection criteria. Renew. Sustain. Energy Rev. 163, 112478 (2022).
Chu, S. & Wang, Q. Climate change and innovative paths to a more sustainable future. Front. Energy 18, 717–726 (2024).
Yang, S. et al. Supercooled erythritol for high-performance seasonal thermal energy storage. Nat. Commun. 15, 4948 (2024).
Woods, J. et al. Rate capability and Ragone plots for phase change thermal energy storage. Nat. Energy 6, 295–302 (2021).
Li, Z.-R., Hu, N. & Fan, L.-W. Nanocomposite phase change materials for high-performance thermal energy storage: a critical review. Energy Storage Mater. 55, 727–753 (2023).
Wang, J.-X., Mao, Y. & Miljkovic, N. Nano-enhanced graphite/phase change material/graphene composite for sustainable and efficient passive thermal management. Adv. Sci. 11, 2402190 (2024).
Zhao, Z. et al. Carbon-based phase change composites with directional high thermal conductivity for interface thermal management. Chem. Eng. J. 496, 154305 (2024).
Stefan, J. Ueber die theorie der eisbildung, insbesondere über die eisbildung im polarmeere. Ann. Phys. 278, 269–286 (1891).
Yang, R., Xu, D., Verzicco, R. & Lohse, D. Asymmetric equilibrium states for melting and freezing in thermal convection. J. Fluid Mech. 1017, A12 (2025).
Du, Y., Calzavarini, E. & Sun, C. The physics of freezing and melting in the presence of flows. Nat. Rev. Phys. 6, 676–690 (2024).
Hu, N., Li, Z.-R., Xu, Z.-W. & Fan, L.-W. Rapid charging for latent heat thermal energy storage: a state-of-the-art review of close-contact melting. Renew. Sustain. Energy Rev. 155, 111918 (2022).
Rozenfeld, T., Kozak, Y., Hayat, R. & Ziskind, G. Close-contact melting in a horizontal cylindrical enclosure with longitudinal plate fins: demonstration, modeling and application to thermal storage. Int. J. Heat Mass Transf. 86, 465–477 (2015).
Chen, L., Huang, S., Ras, R. H. A. & Tian, X. Omniphobic liquid-like surfaces. Nat. Rev. Chem. 7, 123–137 (2023).
Zhang, L., Guo, Z., Sarma, J., Zhao, W. & Dai, X. Gradient quasi-liquid surface enabled self-propulsion of highly wetting liquids. Adv. Funct. Mater. 31, 2008614 (2021).
Li, S. et al. Durable, ultrathin, and antifouling polymer brush coating for efficient condensation heat transfer. ACS Appl. Mater. Interfaces 16, 1941–1949 (2024).
Wang, C.-Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518 (2016).
Hu, N., Fan, L.-W., Gao, X. & Stone, H. A. Close-contact melting on hydrophobic textured surfaces: confinement and meniscus effects. J. Fluid Mech. 1010, A46 (2025).
Franz, G. Plasma enhanced chemical vapor deposition of organic polymers. Processes 9, 980 (2021).
De Freitas, A. S. M. et al. Organosilicon films deposited in low-pressure plasma from hexamethyldisiloxane — a review. Vacuum 194, 110556 (2021).
Wrobel, A. M. & Uznanski, P. Hard silicon carbonitride thin-film coatings by remote hydrogen plasma chemical vapor deposition using aminosilane and silazane precursors. 2: Physical, optical, and mechanical properties of deposited films. Plasma Process. Polym. 18, 2000241 (2021).
Dhyani, A. et al. Design and applications of surfaces that control the accretion of matter. Science 373, eaba5010 (2021).
Wang, Z. et al. Hard transparent nanogradient coating for ultradurable omniphobic liquid-like surface. Chem. Eng. J. 497, 154415 (2024).
Hellström, L. H. O., Samaha, M. A., Wang, K. M., Smits, A. J. & Hultmark, M. Errors in parallel-plate and cone-plate rheometer measurements due to sample underfill. Meas. Sci. Technol. 26, 015301 (2015).
Choi, C.-H. & Kim, C.-J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96, 066001 (2006).
Lee, C., Choi, C.-H. & Kim, C.-J. C. Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101, 064501 (2008).
Li, X. et al. Nonuniform metal foam design and pore-scale analysis of a tilted composite phase change material system for photovoltaics thermal management. Appl. Energy 298, 117203 (2021).
Triki, R., Chtourou, S. & Baccar, M. Heat transfer enhancement of phase change materials PCMs using innovative fractal H-shaped fin configurations. J. Energy Storage 73, 109020 (2023).
Al-Abidi, A. A., Mat, S., Sopian, K., Sulaiman, M. Y. & Mohammad, A. T. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build. 68, 33–41 (2014).
Lu, B., Zhang, Y., Sun, D., Yuan, Z. & Yang, S. Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit. Appl. Therm. Eng. 187, 116575 (2021).
Xie, M., Huang, J., Ling, Z., Fang, X. & Zhang, Z. Improving the heat storage/release rate and photo-thermal conversion performance of an organic PCM/expanded graphite composite block. Sol. Energy Mater. Sol. Cells 201, 110081 (2019).
Zhou, W. et al. Numerical simulation and optimization of compact latent heat exchanger with micro-channel plate in shape-stabilized composite phase change material. Appl. Therm. Eng. 245, 122740 (2024).
Zeng, Z., Zhao, B. & Wang, R. High-power-density packed-bed thermal energy storage using form-stable expanded graphite-based phase change composite. Renew. Sustain. Energy Rev. 182, 113373 (2023).
Yu, C. et al. High-power-density miniaturized packed-bed thermal energy storage unit via phase change material capsules. Appl. Energy 375, 124193 (2024).
Chen, Y. J., Nguyen, D. D., Shen, M. Y., Yip, M. C. & Tai, N. H. Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites. Compos. A Appl. Sci. Manuf. 44, 40–46 (2013).
Lin, Y. et al. Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nanomicro Lett. 13, 180 (2021).
Qian, T. T., Zhu, S. K., Wang, H. L., Li, A. & Fan, B. Comparative study of single-walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of peg-infiltrated phase-change material composites. ACS Sustain. Chem. Eng. 7, 2446–2458 (2019).
Yang, J. et al. High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 6, 5880–5886 (2018).
Gong, S. et al. Effect of nano-SiC on thermal properties of expanded graphite/1-octadecanol composite materials for thermal energy storage. Powder Technol. 367, 32–39 (2020).
Wang, T., Liu, Y., Meng, R. & Zhang, M. Thermal performance of galactitol/mannitol eutectic mixture/expanded graphite composite as phase change material for thermal energy harvesting. J. Energy Storage 34, 101997 (2021).
Li, Q. et al. Preparation and properties of erythritol/exfoliated graphite nanoplatelets @ polyaniline microencapsulated phase change materials with improved photothermal conversion efficiency. J. Energy Storage 72, 108553 (2023).
Fan, L.-W. et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy 110, 163–172 (2013).
Al-Ahmed, A. et al. Thermal energy storage and thermal conductivity properties of Octadecanol-MWCNT composite PCMs as promising organic heat storage materials. Sci. Rep. 10, 9168 (2020).

