Saturday, January 10, 2026
No menu items!
HomeNaturePulse heating and slip enhance charging of phase-change thermal batteries

Pulse heating and slip enhance charging of phase-change thermal batteries

  • Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Saher, S. et al. Trimodal thermal energy storage material for renewable energy applications. Nature 636, 622–626 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gur, I., Sawyer, K. & Prasher, R. Searching for a better thermal battery. Science 335, 1454–1455 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Henry, A., Prasher, R. & Majumdar, A. Five thermal energy grand challenges for decarbonization. Nat. Energy 5, 635–637 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Thiel, G. P. & Stark, A. K. To decarbonize industry, we must decarbonize heat. Joule 5, 531–550 (2021).

    Article 

    Google Scholar
     

  • Matuszek, K., Kar, M., Pringle, J. M. & MacFarlane, D. R. Phase change materials for renewable energy storage at intermediate temperatures. Chem. Rev. 123, 491–514 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, G. et al. Phase change thermal storage materials for interdisciplinary applications. Chem. Rev. 123, 6953–7024 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, T., King, W. P. & Miljkovic, N. Phase change material-based thermal energy storage. Cell Rep. Phys. Sci. 2, 100540 (2021).

    Article 

    Google Scholar
     

  • Wu, S. et al. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31, 1905099 (2019).

    Article 

    Google Scholar
     

  • Fu, W. et al. High power and energy density dynamic phase change materials using pressure-enhanced close contact melting. Nat. Energy 7, 270–280 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kozak, Y., Rozenfeld, T. & Ziskind, G. Close-contact melting in vertical annular enclosures with a non-isothermal base: theoretical modeling and application to thermal storage. Int. J. Heat Mass Transf. 72, 114–127 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wu, S., Zhang, X., Tang, K. & Li, T. Magnetically-regulated close contact melting for high-power-density latent heat energy storage. J. Energy Storage 95, 112660 (2024).

    Article 

    Google Scholar
     

  • Dumont, O. et al. Carnot battery technology: a state-of-the-art review. J. Energy Storage 32, 101756 (2020).

    Article 

    Google Scholar
     

  • Liang, T. et al. Key components for Carnot Battery: technology review, technical barriers and selection criteria. Renew. Sustain. Energy Rev. 163, 112478 (2022).

    Article 

    Google Scholar
     

  • Chu, S. & Wang, Q. Climate change and innovative paths to a more sustainable future. Front. Energy 18, 717–726 (2024).

    Article 

    Google Scholar
     

  • Yang, S. et al. Supercooled erythritol for high-performance seasonal thermal energy storage. Nat. Commun. 15, 4948 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woods, J. et al. Rate capability and Ragone plots for phase change thermal energy storage. Nat. Energy 6, 295–302 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z.-R., Hu, N. & Fan, L.-W. Nanocomposite phase change materials for high-performance thermal energy storage: a critical review. Energy Storage Mater. 55, 727–753 (2023).

    Article 

    Google Scholar
     

  • Wang, J.-X., Mao, Y. & Miljkovic, N. Nano-enhanced graphite/phase change material/graphene composite for sustainable and efficient passive thermal management. Adv. Sci. 11, 2402190 (2024).

    Article 

    Google Scholar
     

  • Zhao, Z. et al. Carbon-based phase change composites with directional high thermal conductivity for interface thermal management. Chem. Eng. J. 496, 154305 (2024).

    Article 

    Google Scholar
     

  • Stefan, J. Ueber die theorie der eisbildung, insbesondere über die eisbildung im polarmeere. Ann. Phys. 278, 269–286 (1891).

    Article 

    Google Scholar
     

  • Yang, R., Xu, D., Verzicco, R. & Lohse, D. Asymmetric equilibrium states for melting and freezing in thermal convection. J. Fluid Mech. 1017, A12 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Du, Y., Calzavarini, E. & Sun, C. The physics of freezing and melting in the presence of flows. Nat. Rev. Phys. 6, 676–690 (2024).

    Article 

    Google Scholar
     

  • Hu, N., Li, Z.-R., Xu, Z.-W. & Fan, L.-W. Rapid charging for latent heat thermal energy storage: a state-of-the-art review of close-contact melting. Renew. Sustain. Energy Rev. 155, 111918 (2022).

    Article 

    Google Scholar
     

  • Rozenfeld, T., Kozak, Y., Hayat, R. & Ziskind, G. Close-contact melting in a horizontal cylindrical enclosure with longitudinal plate fins: demonstration, modeling and application to thermal storage. Int. J. Heat Mass Transf. 86, 465–477 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Chen, L., Huang, S., Ras, R. H. A. & Tian, X. Omniphobic liquid-like surfaces. Nat. Rev. Chem. 7, 123–137 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, L., Guo, Z., Sarma, J., Zhao, W. & Dai, X. Gradient quasi-liquid surface enabled self-propulsion of highly wetting liquids. Adv. Funct. Mater. 31, 2008614 (2021).

    Article 

    Google Scholar
     

  • Li, S. et al. Durable, ultrathin, and antifouling polymer brush coating for efficient condensation heat transfer. ACS Appl. Mater. Interfaces 16, 1941–1949 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C.-Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hu, N., Fan, L.-W., Gao, X. & Stone, H. A. Close-contact melting on hydrophobic textured surfaces: confinement and meniscus effects. J. Fluid Mech. 1010, A46 (2025).

    Article 
    MathSciNet 

    Google Scholar
     

  • Franz, G. Plasma enhanced chemical vapor deposition of organic polymers. Processes 9, 980 (2021).

    Article 

    Google Scholar
     

  • De Freitas, A. S. M. et al. Organosilicon films deposited in low-pressure plasma from hexamethyldisiloxane — a review. Vacuum 194, 110556 (2021).

    Article 

    Google Scholar
     

  • Wrobel, A. M. & Uznanski, P. Hard silicon carbonitride thin-film coatings by remote hydrogen plasma chemical vapor deposition using aminosilane and silazane precursors. 2: Physical, optical, and mechanical properties of deposited films. Plasma Process. Polym. 18, 2000241 (2021).

    Article 

    Google Scholar
     

  • Dhyani, A. et al. Design and applications of surfaces that control the accretion of matter. Science 373, eaba5010 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Hard transparent nanogradient coating for ultradurable omniphobic liquid-like surface. Chem. Eng. J. 497, 154415 (2024).

    Article 

    Google Scholar
     

  • Hellström, L. H. O., Samaha, M. A., Wang, K. M., Smits, A. J. & Hultmark, M. Errors in parallel-plate and cone-plate rheometer measurements due to sample underfill. Meas. Sci. Technol. 26, 015301 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Choi, C.-H. & Kim, C.-J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96, 066001 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lee, C., Choi, C.-H. & Kim, C.-J. C. Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101, 064501 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Nonuniform metal foam design and pore-scale analysis of a tilted composite phase change material system for photovoltaics thermal management. Appl. Energy 298, 117203 (2021).

    Article 

    Google Scholar
     

  • Triki, R., Chtourou, S. & Baccar, M. Heat transfer enhancement of phase change materials PCMs using innovative fractal H-shaped fin configurations. J. Energy Storage 73, 109020 (2023).

    Article 

    Google Scholar
     

  • Al-Abidi, A. A., Mat, S., Sopian, K., Sulaiman, M. Y. & Mohammad, A. T. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build. 68, 33–41 (2014).

    Article 

    Google Scholar
     

  • Lu, B., Zhang, Y., Sun, D., Yuan, Z. & Yang, S. Experimental investigation on thermal behavior of paraffin in a vertical shell and spiral fin tube latent heat thermal energy storage unit. Appl. Therm. Eng. 187, 116575 (2021).

    Article 

    Google Scholar
     

  • Xie, M., Huang, J., Ling, Z., Fang, X. & Zhang, Z. Improving the heat storage/release rate and photo-thermal conversion performance of an organic PCM/expanded graphite composite block. Sol. Energy Mater. Sol. Cells 201, 110081 (2019).

    Article 

    Google Scholar
     

  • Zhou, W. et al. Numerical simulation and optimization of compact latent heat exchanger with micro-channel plate in shape-stabilized composite phase change material. Appl. Therm. Eng. 245, 122740 (2024).

    Article 

    Google Scholar
     

  • Zeng, Z., Zhao, B. & Wang, R. High-power-density packed-bed thermal energy storage using form-stable expanded graphite-based phase change composite. Renew. Sustain. Energy Rev. 182, 113373 (2023).

    Article 

    Google Scholar
     

  • Yu, C. et al. High-power-density miniaturized packed-bed thermal energy storage unit via phase change material capsules. Appl. Energy 375, 124193 (2024).

    Article 

    Google Scholar
     

  • Chen, Y. J., Nguyen, D. D., Shen, M. Y., Yip, M. C. & Tai, N. H. Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites. Compos. A Appl. Sci. Manuf. 44, 40–46 (2013).

    Article 

    Google Scholar
     

  • Lin, Y. et al. Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nanomicro Lett. 13, 180 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, T. T., Zhu, S. K., Wang, H. L., Li, A. & Fan, B. Comparative study of single-walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of peg-infiltrated phase-change material composites. ACS Sustain. Chem. Eng. 7, 2446–2458 (2019).

    Article 

    Google Scholar
     

  • Yang, J. et al. High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 6, 5880–5886 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Gong, S. et al. Effect of nano-SiC on thermal properties of expanded graphite/1-octadecanol composite materials for thermal energy storage. Powder Technol. 367, 32–39 (2020).

    Article 

    Google Scholar
     

  • Wang, T., Liu, Y., Meng, R. & Zhang, M. Thermal performance of galactitol/mannitol eutectic mixture/expanded graphite composite as phase change material for thermal energy harvesting. J. Energy Storage 34, 101997 (2021).

    Article 

    Google Scholar
     

  • Li, Q. et al. Preparation and properties of erythritol/exfoliated graphite nanoplatelets @ polyaniline microencapsulated phase change materials with improved photothermal conversion efficiency. J. Energy Storage 72, 108553 (2023).

    Article 

    Google Scholar
     

  • Fan, L.-W. et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy 110, 163–172 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Al-Ahmed, A. et al. Thermal energy storage and thermal conductivity properties of Octadecanol-MWCNT composite PCMs as promising organic heat storage materials. Sci. Rep. 10, 9168 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments