Thursday, April 3, 2025
No menu items!
HomeNaturePsilocybin’s lasting action requires pyramidal cell types and 5-HT2A receptors

Psilocybin’s lasting action requires pyramidal cell types and 5-HT2A receptors

  • Goodwin, G. M. et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N. Engl. J. Med. 387, 1637–1648 (2022).

    PubMed 
    MATH 

    Google Scholar
     

  • Davis, A. K. et al. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry 78, 481–489 (2021).

    PubMed 
    MATH 

    Google Scholar
     

  • Carhart-Harris, R. et al. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med. 384, 1402–1411 (2021).

    PubMed 
    MATH 

    Google Scholar
     

  • Bogenschutz, M. P. et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. JAMA Psychiatry 79, 953–962 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ly, C. et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 23, 3170–3182 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jones, K. A. et al. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc. Natl Acad. Sci. USA 106, 19575–19580 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, L. X. et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109, 2535–2544 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • de la Fuente Revenga, M. et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 37, 109836 (2021).

    PubMed 
    MATH 

    Google Scholar
     

  • Jefferson, S. J. et al. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. Neuropsychopharmacology 48, 1257–1266 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kwan, A. C., Olson, D. E., Preller, K. H. & Roth, B. L. The neural basis of psychedelic action. Nat. Neurosci. 25, 1407–1419 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duman, R. S. & Aghajanian, G. K. Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68–72 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cameron, L. P. et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 589, 474–479 (2021).

    PubMed 
    MATH 

    Google Scholar
     

  • Lu, J. et al. An analog of psychedelics restores functional neural circuits disrupted by unpredictable stress. Mol. Psychiatry 26, 6237–6252 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Anastasiades, P. G. & Carter, A. G. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci. 44, 550–563 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Baker, A. et al. Specialized subpopulations of deep-layer pyramidal neurons in the neocortex: bridging cellular properties to functional consequences. J. Neurosci. 38, 5441–5455 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shepherd, G. M. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14, 278–291 (2013).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, N., Chen, T. W., Guo, Z. V., Gerfen, C. R. & Svoboda, K. A motor cortex circuit for motor planning and movement. Nature 519, 51–56 (2015).

    PubMed 

    Google Scholar
     

  • Musall, S. et al. Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making. Nat. Neurosci. 26, 495–505 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, L. & Higley, M. J. Layer 5 circuits in V1 differentially control visuomotor behavior. Neuron 105, 346–354 (2020).

    PubMed 
    MATH 

    Google Scholar
     

  • Garcia, A. F., Crummy, E. A., Webb, I. G., Nooney, M. N. & Ferguson, S. M. Distinct populations of cortical pyramidal neurons mediate drug reward and aversion. Nat. Commun. 12, 182 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, M. F., Deisz, R. A., Prince, D. A. & Peroutka, S. J. Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res. 423, 347–352 (1987).

    PubMed 

    Google Scholar
     

  • Araneda, R. & Andrade, R. 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40, 199–412 (1991).


    Google Scholar
     

  • Avesar, D. & Gulledge, A. T. Selective serotonergic excitation of callosal projection neurons. Front. Neural Circuits 6, 12 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elliott, M. C., Tanaka, P. M., Schwark, R. W. & Andrade, R. Serotonin differentially regulates L5 pyramidal cell classes of the medial prefrontal cortex in rats and mice. eNeuro https://doi.org/10.1523/ENEURO.0305-17.2018 (2018).

  • Amargos-Bosch, M. et al. Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb. Cortex 14, 281–299 (2004).

    PubMed 

    Google Scholar
     

  • Savalia, N. K., Shao, L. X. & Kwan, A. C. A dendrite-focused framework for understanding the actions of ketamine and psychedelics. Trends Neurosci. 44, 260–275 (2021).

    PubMed 

    Google Scholar
     

  • Puig, M. V., Celada, P., Diaz-Mataix, L. & Artigas, F. In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb. Cortex 13, 870–882 (2003).

    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Whole-brain mapping of neuronal activity in the learned helplessness model of depression. Front. Neural Circuits 10, 3 (2016).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Davoudian, P. A., Shao, L. X. & Kwan, A. C. Shared and distinct brain regions targeted for immediate early gene expression by ketamine and psilocybin. ACS Chem. Neurosci. 14, 468–480 (2023).

    PubMed 

    Google Scholar
     

  • Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matho, K. S. et al. Genetic dissection of the glutamatergic neuron system in cerebral cortex. Nature 598, 182–187 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagai, Y. et al. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat. Neurosci. 23, 1157–1167 (2020).

    PubMed 

    Google Scholar
     

  • Halberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J. & Brandt, S. D. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology 167, 107933 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malenka, R. C., Lancaster, B. & Zucker, R. S. Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron 9, 121–128 (1992).

    PubMed 
    MATH 

    Google Scholar
     

  • Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. J., Escobedo-Lozoya, Y., Szatmari, E. M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of calcium imaging data. PLoS Comput. Biol. 13, e1005423 (2017).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ali, F. et al. Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nat. Commun. 11, 72 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • DeFelipe, J., Arellano, J. I., Gomez, A., Azmitia, E. C. & Munoz, A. Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. J. Comp. Neurol. 433, 148–155 (2001).

    PubMed 

    Google Scholar
     

  • Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cameron, L. P. et al. 5-HT2ARs mediate therapeutic behavioral effects of psychedelic tryptamines. ACS Chem. Neurosci. 14, 351–358 (2023).

    PubMed 
    MATH 

    Google Scholar
     

  • Hesselgrave, N., Troppoli, T. A., Wulff, A. B., Cole, A. B. & Thompson, S. M. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc. Natl Acad. Sci. USA 118, e2022489118 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sekssaoui, M., Bockaert, J., Marin, P. & Bécamel, C. Antidepressant-like effects of psychedelics in a chronic despair mouse model: is the 5-HT2A receptor the unique player? Neuropsychopharmacology 49, 747–756 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, W. et al. Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nat. Commun. 9, 4824 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yao, Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Aghajanian, G. K. & Marek, G. J. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36, 589–599 (1997).

    PubMed 
    MATH 

    Google Scholar
     

  • Kaplan, A. L. et al. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature 610, 582–591 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, D. et al. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science 375, 403–411 (2022).

    PubMed 
    MATH 

    Google Scholar
     

  • Dembrow, N. C., Zemelman, B. V. & Johnston, D. Temporal dynamics of L5 dendrites in medial prefrontal cortex regulate integration versus coincidence detection of afferent inputs. J. Neurosci. 35, 4501–4514 (2015).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Anastasiades, P. G., Collins, D. P. & Carter, A. G. Mediodorsal and ventromedial thalamus engage distinct L1 circuits in the prefrontal cortex. Neuron 109, 314–330 (2021).

    PubMed 

    Google Scholar
     

  • Silberberg, G. & Markram, H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53, 735–746 (2007).

    PubMed 

    Google Scholar
     

  • Wu, S. J. et al. Cortical somatostatin interneuron subtypes form cell-type-specific circuits. Neuron 111, 2675–2692 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Suzuki, M. & Larkum, M. E. General anesthesia decouples cortical pyramidal neurons. Cell 180, 666–676 (2020).

    PubMed 
    MATH 

    Google Scholar
     

  • Bharioke, A. et al. General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons. Neuron 110, 2024–2040 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wilkinson, S. T., Holtzheimer, P. E., Gao, S., Kirwin, D. S. & Price, R. B. Leveraging neuroplasticity to enhance adaptive learning: the potential for synergistic somatic-behavioral treatment combinations to improve clinical outcomes in depression. Biol. Psychiatry 85, 454–465 (2019).

    PubMed 

    Google Scholar
     

  • Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    PubMed 
    MATH 

    Google Scholar
     

  • Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection. Neuron 92, 372–382 (2016).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shamash, P., Carandini, M., Harris, K. D. & Steinmetz, N. A. A tool for analyzing electrode tracks from slice histology. Preprint at bioRxiv https://doi.org/10.1101/447995 (2018).

  • Wang, Q. et al. The Allen Mouse Brain Common Coordinate Framework: a 3D reference atlas. Cell 181, 936–953 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Claudi, F. et al. Visualizing anatomically registered data with brainrender. eLife 10, e65751 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    PubMed 
    MATH 

    Google Scholar
     

  • Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mitrić, M. et al. Layer- and subregion-specific electrophysiological and morphological changes of the medial prefrontal cortex in a mouse model of neuropathic pain. Sci. Rep. 9, 9479 (2019).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Radnikow, G. & Feldmeyer, D. Layer- and cell type-specific modulation of excitatory neuronal activity in the neocortex. Front. Neuroanat. 12, 1 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    PubMed 

    Google Scholar
     

  • Ali, F. et al. Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a nonsense Shank3 mutation. Mol. Psychiatry 26, 1945–1966 (2021).

    PubMed 
    MATH 

    Google Scholar
     

  • Lutcke, H., Gerhard, F., Zenke, F., Gerstner, W. & Helmchen, F. Inference of neuronal network spike dynamics and topology from calcium imaging data. Front. Neural Circuits 7, 201 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedman, A. et al. A corticostriatal path targeting striosomes controls decision-making under conflict. Cell 161, 1320–1333 (2015).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Boudreau, E. et al. Intraperitoneal catheter placement for pharmacological imaging studies in conscious mice. Lab. Anim. 39, 23–25 (2010).

    MATH 

    Google Scholar
     

  • Siegle, J. H. et al. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J. Neural Eng. 14, 045003 (2017).

    PubMed 
    MATH 

    Google Scholar
     

  • Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pachitariu, M. et al. Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. Preprint at bioRxiv https://doi.org/10.1101/061481 (2016).

  • Liu, R. J. & Aghajanian, G. K. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc. Natl Acad. Sci. USA 105, 359–364 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments