Friday, September 26, 2025
No menu items!
HomeNatureProximal cooperative aerial manipulation with vertically stacked drones

Proximal cooperative aerial manipulation with vertically stacked drones

  • Shi, G., Hönig, W., Shi, X., Yue, Y. & Chung, S. J. Neural-Swarm2: planning and control of heterogeneous multirotor swarms using learned interactions. IEEE Trans. Robot. 38, 1063–1079 (2021).

    Article 

    Google Scholar
     

  • Zhang, R., Zhang, D. & Mueller, M. W. Proxfly: robust control for close proximity quadcopter flight via residual reinforcement learning. In Proc. 2025 IEEE International Conference on Robotics and Automation (ICRA), 13683–13689 (IEEE, 2025).

  • Ollero, A., Tognon, M., Suarez, A., Lee, D. & Franchi, A. Past, present, and future of aerial robotic manipulators. IEEE Trans. Robot. 38, 626–645 (2021).

    Article 

    Google Scholar
     

  • Kim, S., Seo, H., Shin, J. & Kim, H. J. Cooperative aerial manipulation using multirotors with multi-DOF robotic arms. IEEE/ASME Trans. Mechatron. 23, 702–713 (2018).

    Article 

    Google Scholar
     

  • Rossi, E. et al. Cooperative aerial load transportation via sampled communication. IEEE Control Syst. Lett. 4, 277–282 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Spieler, P. et al. Parsec: an aerial platform for autonomous deployment of self-anchoring payloads on natural vertical surfaces. In Proc. 2023 IEEE International Conference on Robotics and Automation (ICRA), 5331–5337 (IEEE, 2023).

  • Lee, J. et al. Introspective perception for long-term aerial telemanipulation with virtual reality. IEEE Trans Field Robot. 1, 360–393 (2024).

    Article 

    Google Scholar
     

  • Yiğit, A., Cuvillon, L., Perozo, M. A., Durand, S. & Gangloff, J. Dynamic control of a macro–mini aerial manipulator with elastic suspension. IEEE Trans. Robot. 39, 4820–4836 (2023).

    Article 

    Google Scholar
     

  • Guo, X. et al. Powerful UAV manipulation via bioinspired self-adaptive soft self-contained gripper. Sci. Adv. 10, eadn6642 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, W., Chen, J., Ebel, H. & Eberhard, P. Time-optimal handover trajectory planning for aerial manipulators based on discrete mechanics and complementarity constraints. IEEE Trans. Robot. 39, 4332–4349 (2023).

    Article 

    Google Scholar
     

  • Garimella, G. & Kobilarov, M. Towards model-predictive control for aerial pick-and-place. In Proc. 2015 IEEE International Conference on Robotics and Automation (ICRA), 4692–4697 (2015).

  • Ryll, M. et al. 6D interaction control with aerial robots: the flying end-effector paradigm. Int. J. Robot. Res. 38, 1045–1062 (2019).

    Article 

    Google Scholar
     

  • Bodie, K. et al. Active interaction force control for contact-based inspection with a fully actuated aerial vehicle. IEEE Trans. Robot. 37, 709–722 (2020).

    Article 

    Google Scholar
     

  • Alexis, K., Darivianakis, G., Burri, M. & Siegwart, R. Aerial robotic contact-based inspection: planning and control. Auton. Robot. 40, 631–655 (2016).

    Article 

    Google Scholar
     

  • Chermprayong, P., Zhang, K., Xiao, F. & Kovac, M. An integrated delta manipulator for aerial repair: a new aerial robotic system. IEEE Robot. Autom. Mag. 26, 54–66 (2019).

    Article 

    Google Scholar
     

  • Zhang, K. et al. Aerial additive manufacturing with multiple autonomous robots. Nature 609, 709–717 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Hunt, G., Mitzalis, F., Alhinai, T., Hooper, P. A. & Kovac, M. 3D printing with flying robots. In Proc. 2014 IEEE International Conference on Robotics and Automation (ICRA), 4493–4499 (IEEE, 2014).

  • Wang, M. et al. Millimeter-level pick and peg-in-hole task achieved by aerial manipulator. IEEE Trans. Robot. 40, 1242–1260 (2024).

    Article 

    Google Scholar
     

  • Orsag, M., Korpela, C., Bogdan, S. & Oh, P. Dexterous aerial robots–mobile manipulation using unmanned aerial systems. IEEE Trans. Robot. 33, 1453–1466 (2017).

    Article 

    Google Scholar
     

  • Lee, D., Seo, H., Kim, D. & Kim, H. J. Aerial manipulation using model predictive control for opening a hinged door. In Proc. 2020 IEEE International Conference on Robotics and Automation (ICRA), 1237–1242 (IEEE, 2020).

  • Estrada, M. A., Mintchev, S., Christensen, D. L., Cutkosky, M. R. & Floreano, D. Forceful manipulation with micro air vehicles. Sci. Robot. 3, eaau6903 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen, H. & Alexis, K. Forceful aerial manipulation based on an aerial robotic chain: hybrid modeling and control. IEEE Robot. Autom. Lett. 6, 3711–3719 (2021).

    Article 

    Google Scholar
     

  • Vásárhelyi, G. et al. Optimized flocking of autonomous drones in confined environments. Sci. Robot. 3, eaat3536 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, X. et al. Swarm of micro flying robots in the wild. Sci. Robot. 7, eabm5954 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Uzun, S., Üre, N. K. & Açıkmeıe, B. Decentralized state-dependent Markov chain synthesis with an application to swarm guidance. IEEE Trans. Autom. Control 69, 5759–5774 (2024).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Bandyopadhyay, S., Chung, S. J. & Hadaegh, F. Y. Probabilistic and distributed control of a large-scale swarm of autonomous agents. IEEE Trans. Robot. 33, 1103–1123 (2017).

    Article 

    Google Scholar
     

  • Shi, G., et al. Neural lander: stable drone landing control using learned dynamics. In Proc. 2019 IEEE International Conference on Robotics and Automation (ICRA), 9784–9790 (IEEE, 2019).

  • Polvara, R. et al. Toward end-to-end control for UAV autonomous landing via deep reinforcement learning. In Proc. 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 115–123 (IEEE, 2018).

  • Saripalli, S., Montgomery, J. F. & Sukhatme, G. S. Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom. 19, 371–380 (2003).

    Article 

    Google Scholar
     

  • Gonçalves, V. M., McLaughlin, R. & Pereira, G. A. Precise landing of autonomous aerial vehicles using vector fields. IEEE Robot. Autom. Lett. 5, 4337–4344 (2020).

    Article 

    Google Scholar
     

  • Shankar, A., Woo, H. & Prorok, A. Docking multirotors in close proximity using learnt downwash models. In Proc. International Symposium on Experimental Robotics, 427–437 (Springer, 2023).

  • Gielis, J., Shankar, A., Kortvelesy, R. & Prorok, A. Modeling aggregate downwash forces for dense multirotor flight. In Proc. International Symposium on Experimental Robotics, 393–404 (Springer, 2023).

  • Smith, H., Shankar, A., Gielis, J., Blumenkamp, J. & Prorok, A. SO(2)-equivariant downwash models for close proximity flight. IEEE Robot. Autom. Lett. 9, 1174–1181 (2023).

    Article 

    Google Scholar
     

  • Wu, Z. et al. \({\mathcal{L}}1\) quad: \({\mathcal{L}}1\) adaptive augmentation of geometric control for agile quadrotors with performance guarantees. IEEE Trans. Control Syst. Technol. 33, 597–612 (2025).

  • Ebel, H., Luo, W., Yu, F., Tang, Q. & Eberhard, P. Design and experimental validation of a distributed cooperative transportation scheme. IEEE Trans. Autom. Sci. Eng. 18, 1157–1169 (2021).

    Article 

    Google Scholar
     

  • Loianno, G. & Kumar, V. Cooperative transportation using small quadrotors using monocular vision and inertial sensing. IEEE Robot. Autom. Lett. 3, 680–687 (2018).

    Article 

    Google Scholar
     

  • Lee, H., Kim, H. & Kim, H. J. Planning and control for collision-free cooperative aerial transportation. IEEE Trans. Autom. Sci. Eng. 15, 189–201 (2018).

    Article 

    Google Scholar
     

  • Sanalitro, D., Savino, H. J., Tognon, M., Cortés, J. & Franchi, A. Full-pose manipulation control of a cable-suspended load with multiple UAVs under uncertainties. IEEE Robot. Autom. Lett. 5, 2185–2191 (2020).

    Article 

    Google Scholar
     

  • Li, G., Ge, R. & Loianno, G. Cooperative transportation of cable suspended payloads with MAVs using monocular vision and inertial sensing. IEEE Robot. Autom. Lett. 6, 5316–5323 (2021).

    Article 

    Google Scholar
     

  • Palunko, I., Cruz, P. & Fierro, R. Agile load transportation: safe and efficient load manipulation with aerial robots. IEEE Robot. Autom. Mag. 19, 69–79 (2012).

    Article 

    Google Scholar
     

  • Gawel, A. et al. Aerial picking and delivery of magnetic objects with MAVs. In Proc. 2017 IEEE International Conference on Robotics and Automation (ICRA), 5746–5752 (IEEE, 2017).

  • Saunders, J., Saeedi, S. & Li, W. Autonomous aerial robotics for package delivery: a technical review. J. Field Robot. 41, 3–49 (2024).

    Article 

    Google Scholar
     

  • Kornatowski, P. M., Feroskhan, M., Stewart, W. J. & Floreano, D. Downside up: rethinking parcel position for aerial delivery. IEEE Robot. Autom. Lett. 5, 4297–4304 (2020).

    Article 

    Google Scholar
     

  • Lindsey, Q., Mellinger, D. & Kumar, V. Construction with quadrotor teams. Auton. Robot. 33, 323–336 (2012).

    Article 

    Google Scholar
     

  • Augugliaro, F. et al. The flight assembled architecture installation: cooperative construction with flying machines. IEEE Control Syst. Mag. 34, 46–64 (2014).

    Article 
    MathSciNet 

    Google Scholar
     

  • Jimenez-Cano, A. E., Martin, J., Heredia, G., Ollero, A. & Cano, R. Control of an aerial robot with multi-link arm for assembly tasks. In Proc. 2013 IEEE International Conference on Robotics and Automation (ICRA), 4916–4921 (IEEE, 2013).

  • Zhang, X., Zhang, Y., Liu, P. & Zhao, S. Robust localization of occluded targets in aerial manipulation via range-only mapping. IEEE Robotics and Automation Letters 7, 2921–2928 (2022).

    Article 

    Google Scholar
     

  • Scaramuzza, D. et al. Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robot. Autom. Mag. 21, 26–40 (2014).

    Article 

    Google Scholar
     

  • Lee, J. et al. Visual-inertial telepresence for aerial manipulation. In Proc. 2020 IEEE International Conference on Robotics and Automation (ICRA), 1222–1229 (IEEE, 2020).

  • Jain, K. P., Fortmuller, T., Byun, J., Mäkiharju, S. A. & Mueller, M. W. Modeling of aerodynamic disturbances for proximity flight of multirotors. In Proc. 2019 International Conference on Unmanned Aircraft Systems (ICUAS), 1261–1269 (IEEE, 2019).

  • Khan, W., Nahon, M. & Caverly, R. Propeller slipstream model for small unmanned aerial vehicles. In Proc. AIAA Modeling and Simulation Technologies Conference (MST), 4907 (AIAA, 2013).

  • Davoudi, B., Taheri, E., Duraisamy, K., Jayaraman, B. & Kolmanovsky, I. Quad-rotor flight simulation in realistic atmospheric conditions. AIAA J. 58, 1992–2004 (2020).

    Article 
    ADS 

    Google Scholar
     

  • He, X. & Leang, K. K. Quasi-steady in-ground-effect model for single and multirotor aerial vehicles. AIAA J. 58, 5318–5331 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mahony, R., Kumar, V. & Corke, P. Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19, 20–32 (2012).

    Article 

    Google Scholar
     

  • McKinnon, C. D. & Schoellig, A. P. Unscented external force and torque estimation for quadrotors. In Proc. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5651–5657 (IEEE, 2016).

  • Cao, H., Li, Y., Liu, C. & Zhao, S. ESO-based robust and high-precision tracking control for aerial manipulation. IEEE Trans. Autom. Sci. Eng. 21, 2139–2155 (2023).

    Article 

    Google Scholar
     

  • Bauersfeld, L., Muller, K., Ziegler, D., Coletti, F. & Scaramuzza, D. Robotics meets fluid dynamics: a characterization of the induced airflow below a quadrotor as a turbulent jet. IEEE Robot. Autom. Lett. 10, 1241–1248 (2025).

    Article 

    Google Scholar
     

  • Waslander, S. & Wang, C. Wind disturbance estimation and rejection for quadrotor position control. In Proc. AIAA Infotech@Aerospace Conference, 1983–1995 (AIAA, 2009).

  • Cao, H., Shen, J., Liu, C., Zhu, B. & Zhao, S. Motion planning for aerial pick-and-place with geometric feasibility constraints. IEEE Trans. Autom. Sci. Eng. 22, 2577–2594 (2024).

    Article 

    Google Scholar
     

  • Yu, J. & LaValle, S. M. Optimal multirobot path planning on graphs: complete algorithms and effective heuristics. IEEE Trans. Robot. 32, 1163–1177 (2016).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments