Saturday, December 13, 2025
No menu items!
HomeNatureProtected area management has significant spillover effects on vegetation

Protected area management has significant spillover effects on vegetation

  • Convention on Biological Diversity. Kunming–Montreal Global Biodiversity Framework, 15th Meeting of the Conference of Parties to the UN Convention on Biological Diversity, CBD/COP/15/L25 (2022).

  • Hansen, A. J. & DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Cumming, G. S. Conceptualizing and measuring ecological spillover effects from protected areas. Front. Ecol. Environ. https://doi.org/10.1002/fee.70008 (2025).

  • Cumming G. S. et al. Social-ecological contributions of protected areas to their surroundings. One Earth https://doi.org/10.1016/j.oneear.2025.101462 (2025).

  • Zeng, Y., Koh, L. P. & Wilcove, D. S. Gains in biodiversity conservation and ecosystem services from the expansion of the planet’s protected areas. Sci. Adv. 8, eabl9885 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodie, J. F. et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 620, 807–812 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeFries, R., Karanth, K. K. & Pareeth, S. Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biol. Conserv. 143, 2870–2880 (2010).

    Article 

    Google Scholar
     

  • Watson, J. E., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfaff, A. & Robalino, J. in Annual Review of Resource Economics, Vol. 9 (eds Rausser, G. C. & Zilberman, D.) 299–315 (Annual Reviews, 2017).

  • Blitzer, E. J. et al. Spillover of functionally important organisms between managed and natural habitats. Agric. Ecosyst. Environ. 146, 34–43 (2012).

    Article 

    Google Scholar
     

  • Walters, B. B. et al. Ethnobiology, socio-economics and management of mangrove forests: a review. Aquat. Bot. 89, 220–236 (2008).

    Article 

    Google Scholar
     

  • Sabuhoro, E., Ayorekire, J. & Munanura, I. E. The quality of life and perceived human–wildlife conflicts among forest communities around the mountain gorilla’s Virunga landscape in Africa. Sustainability 15, 19 (2023).

    Article 

    Google Scholar
     

  • Eby, P. et al. Pathogen spillover driven by rapid changes in bat ecology. Nature 613, 340–344 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cumming, G. S, Davies, Z. G, Fischer, J. & Hajjar, R. Toward a pluralistic conservation science. Conserv. Lett. 16, e12952 (2023).

    Article 

    Google Scholar
     

  • Fuller, C., Ondei, S., Brook, B. W. & Buettel, J. C. First, do no harm: a systematic review of deforestation spillovers from protected areas. Glob. Ecol. Conserv. 18, 12 (2019).


    Google Scholar
     

  • Di Lorenzo, M., Claudet, J. & Guidetti, P. Spillover from marine protected areas to adjacent fisheries has an ecological and a fishery component. J. Nat. Conserv. 32, 62–66 (2016).

    Article 

    Google Scholar
     

  • Millennium Assessment. Ecosystems and Human Wellbeing: Biodiversity Synthesis (Island Press, 2005).

  • Woodruff, S. C. & BenDor, T. K. Ecosystem services in urban planning: comparative paradigms and guidelines for high quality plans. Landsc. Urban Plan. 152, 90–100 (2016).

    Article 

    Google Scholar
     

  • Assis, J. C. et al. Linking landscape structure and ecosystem service flow. Ecosyst. Serv. 62, 101535 (2023).

    Article 

    Google Scholar
     

  • Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: a meta-analytical approach. Fish Fisheries 21, 906–915 (2020).

    Article 

    Google Scholar
     

  • Burns, E. S. et al. Finding harmony in Marine Protected Area design guidelines. Conserv. Sci. Prac. 5, e12946 (2023).

    Article 

    Google Scholar
     

  • Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Schalkwyk, J., Pryke, J. S., Samways, M. J. & Gaigher, R. Environmental filtering and spillover explain multi-species edge responses across agricultural boundaries in a biosphere reserve. Sci. Rep. 10, 10 (2020).


    Google Scholar
     

  • Ament, J. M. & Cumming, G. S. Scale dependency in effectiveness, isolation, and social-ecological spillover of protected areas. Conserv. Biol. 30, 846–855 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Stoldt, M., Göttert, T., Mann, C. & Zeller, U. Transfrontier conservation areas and human-wildlife conflict: The case of the Namibian component of the Kavango-Zambezi (KAZA) TFCA. Sci. Rep. 10, 7964 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. https://R-project.org/ (R Foundation for Statistical Computing, 2020).

  • Tissott, B. & Mueller, N. DEA Land Cover 25m (Commonwealth of Australia, 2022).

  • Lucas, R. et al. Land cover mapping using digital earth Australia. Data 4, 143 (2019).

    Article 

    Google Scholar
     

  • Lindenmayer, D. B. et al. The response of arboreal marsupials to long-term changes in forest disturbance. Anim. Conserv. 24, 246–258 (2021).

    Article 

    Google Scholar
     

  • Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 4, 898–900 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zivec, P., Balcombe, S., McBroom, J., Sheldon, F. & Capon, S. J. Patterns and drivers of natural regeneration on old-fields in semi-arid floodplain ecosystems. Agric. Ecosyst. Environ. 316, 107466 (2021).

    Article 

    Google Scholar
     

  • Department of Climate Change, Energy, and Water. CAPAD 2020 https://www.dcceew.gov.au/environment/land/nrs/science/capad/2020 (Department of Climate Change, Energy, and Water, 2020).

  • Adams, V. M. et al. Protected, cleared, or at risk: the fate of Australian plant species under continued land use change. Biol. Conserv. 284, 110201 (2023).

    Article 

    Google Scholar
     

  • Adams, V. M. et al. Multiple-use protected areas are critical to equitable and effective conservation. One Earth 6, 1173–1189 (2023).

    Article 

    Google Scholar
     

  • Evans, M. C. Deforestation in Australia: drivers, trends and policy responses. Pac. Conserv. Biol. 22, 130–150 (2016).

    Article 

    Google Scholar
     

  • Simmons, B. A. et al. Spatial and temporal patterns of land clearing during policy change. Land Use Policy 75, 399–410 (2018).

    Article 

    Google Scholar
     

  • Miller, R. K., Field, C. B. & Mach, K. J. Barriers and enablers for prescribed burns for wildfire management in California. Nat. Sustain. 3, 101–109 (2020).

    Article 

    Google Scholar
     

  • Porensky, L. M. & Young, T. P. Edge-effect interactions in fragmented and patchy landscapes. Conserv. Biol. 27, 509–519 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ries, L. & Sisk, T. D. A predictive model of edge effects. Ecology 85, 2917–2926 (2004).

    Article 

    Google Scholar
     

  • Cumming, G. S. & Bellwood, D. R. Broad-scale analysis of fish community data suggests critical need to support regional connectivity of coral reefs. Ecol. Appl. 33, e2849 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Goetze, J. S. et al. Increased connectivity and depth improve the effectiveness of marine reserves. Global Change Biol. 27, 3432–3447 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ferraro, P. J. & Hanauer, M. M. Through what mechanisms do protected areas affect environmental and social outcomes?. Phil. Trans. R. Soc. B 370, 20140267 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferraro, P. J., Sanchirico, J. N. & Smith, M. D. Causal inference in coupled human and natural systems. Proc. Natl Acad. Sci. USA 116, 5311–5318 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robalino, J., Sandoval, C., Barton, D. N., Chacon, A. & Pfaff, A. Evaluating interactions of forest conservation policies on avoided deforestation. PLoS ONE 10, 16 (2015).

    Article 

    Google Scholar
     

  • Ford, S. A. et al. Deforestation leakage undermines conservation value of tropical and subtropical forest protected areas. Global Ecol. Biogeogr. 29, 2014–2024 (2020).

    Article 

    Google Scholar
     

  • Carey, A. B., Horton, S. P. & Biswell, B. L. Northern spotted owls — influence of prey base and landscape character. Ecol. Monogr. 62, 223–250 (1992).

    Article 

    Google Scholar
     

  • Nagendra, H., Paul, S., Pareeth, S. & Dutt, S. Landscapes of protection: forest change and fragmentation in Northern West Bengal, India. Environ. Manag. 44, 853–864 (2009).

    Article 

    Google Scholar
     

  • Linkie, M., Rood, E. & Smith, R. J. Modelling the effectiveness of enforcement strategies for avoiding tropical deforestation in Kerinci Seblat National Park, Sumatra. Biodivers. Conserv. 19, 973–984 (2010).

    Article 

    Google Scholar
     

  • Wang, C., Yu, M. & Gao, Q. Continued reforestation and urban expansion in the new century of a tropical island in the Caribbean. Remote Sens. 9, 731 (2017).

    Article 

    Google Scholar
     

  • Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bengtsson, J. et al. Reserves, resilience and dynamic landscapes. Ambio 32, 389–396 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 87, 661–685 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: a global meta-analysis. Proc. Natl Acad. Sci. USA 119, e2203385119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Owers, C. J. et al. Living Earth: implementing national standardised land cover classification systems for Earth observation in support of sustainable development. Big Earth Data 5, 368–390 (2021).

    Article 

    Google Scholar
     

  • Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual: LCCS. Vol. 2 (FAO, 2005).

  • Di Gregorio, A. & Jansen, L. J. Land Cover Classification System (LCCS): Classification Concepts and User Manual (FAO, 1998).

  • Digital Earth Australia. DEA Land Cover (Landsat) https://knowledge.dea.ga.gov.au/data/product/dea-land-cover-landsat/ (Digital Earth Australia, 2024).

  • Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett, A. C., Penman, T. D., Arndt, S. K., Roxburgh, S. H. & Bennett, L. T. Climate more important than soils for predicting forest biomass at the continental scale. Ecography 43, 1692–1705 (2020).

    Article 

    Google Scholar
     

  • Herrera, D., Pfaff, A. & Robalino, J. Impacts of protected areas vary with the level of government: Comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 116, 14916–14925 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallant, J. C. & Austin, J. M. Derivation of terrain covariates for digital soil mapping in Australia. Soil Res. 53, 895–906 (2015).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Malone, B. P. et al. Update and expansion of the soil and landscape grid of Australia. Geoderma 455, 117226 (2025).

    Article 

    Google Scholar
     

  • Grundy, M. et al. Soil and landscape grid of Australia. Soil Res. 53, 835–844 (2015).

    Article 

    Google Scholar
     

  • Guerschman, J. P. et al. Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. J. Hydrol. 605, 127318 (2022).

    Article 

    Google Scholar
     

  • Adams, V. M. & Engert, J. E. Australian agricultural resources: a national scale land capability map. Data Brief 46, 108852 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuller, C., Ondei, S., Brook, B. W. & Buettel, J. C. Protected-area planning in the Brazilian Amazon should prioritize additionality and permanence, not leakage mitigation. Biol. Conserv. 248, 10 (2020).

    Article 

    Google Scholar
     

  • Barros, L. D., Venter, M., Ramirez-Delgado, J. P., Coelho, M. G. & Venter, O. No evidence of local deforestation leakage from protected areas establishment in Brazil’s Amazon and Atlantic Forest. Biol. Conserv. 273, 13 (2022).


    Google Scholar
     

  • Giudice, R., Börner, J., Wunder, S. & Cisneros, E. Selection biases and spillovers from collective conservation incentives in the Peruvian Amazon. Environ. Res. Lett. 14, 12 (2019).

    Article 

    Google Scholar
     

  • Shen, Y. et al. Protected areas have remarkable spillover effects on forest conservation on the Qinghai-Tibet Plateau. Divers. Distrib. 28, 2944–2955 (2022).

    Article 

    Google Scholar
     

  • Bivand, R. & Rundel, C. rgeos. R package version 0.6-4. https://CRAN.R-project.org/package=rgeos (2023).

  • Ho, D., Imai, K., King, G. & Stuart, E. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).

  • Greifer, N. Estimating effects after matching. The Comprehensive R Archive Network. cran.r-project.org/web/packages/MatchIt/vignettes/estimating-effects.html (2022).

  • Chatton, A. et al. G-computation, propensity score-based methods, and targeted maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation study. Sci. Rep. 10, 9219 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stegenga, J. Measuring effectiveness. Stud. Hist. Phil. Sci. C 54, 62–71 (2015).


    Google Scholar
     

  • Oksanen, J. et al. vegan: community ecology package. R package version 1.17-6 cran.r-project.org/package=vegan (2011).

  • Cumming, G. S. Data and code for spillover analysis described in Cumming, G.S. (2025). Protected area management has significant spillover effects on vegetation. Figshare https://doi.org/10.6084/m9.figshare.30244648 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments