Hooff, J. J., Tromer, E., Wijk, L. M., Snel, B. & Kops, G. J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 18, 1559–1571 (2017).
Tromer, E. C., Van Hooff, J. J. E., Kops, G. J. P. L. & Snel, B. Mosaic origin of the eukaryotic kinetochore. Proc. Natl Acad. Sci. USA 116, 12873–12882 (2019).
Bensasson, D., Zarowiecki, M., Burt, A. & Koufopanou, V. Rapid evolution of yeast centromeres in the absence of drive. Genetics 178, 2161–2167 (2008).
Logsdon, G. A. et al. The variation and evolution of complete human centromeres. Nature 629, 136–145 (2024).
Malik, H. S. & Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 138, 1067–1082 (2009).
Guin, K., Sreekumar, L. & Sanyal, K. Implications of the evolutionary trajectory of centromeres in the fungal kingdom. Annu. Rev. Microbiol. 74, 835–853 (2020).
Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustashaw, K. & Willard, H. F. Genomic and genetic definition of a functional human centromere. Science 294, 109–115 (2001).
Wlodzimierz, P. et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature 618, 557–565 (2023).
Gordon, J. L., Byrne, K. P. & Wolfe, K. H. Mechanisms of chromosome number evolution in yeast. PLoS Genet. 7, e1002190 (2011).
Haase, M. A. B. et al. Ancient co-option of LTR retrotransposons as yeast centromeres. Preprint at bioRxiv https://doi.org/10.1101/2025.04.25.647736 (2025).
Hession, C., Byrne, K. P., Wolfe, K. H. & Butler, G. Centromeres in budding yeasts are conserved in chromosomal location but not in structure. Preprint at bioRxiv https://doi.org/10.1101/2025.07.24.666568 (2025).
Navarro-Mendoza, M. I. et al. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr. Biol. 29, 3791–3802 (2019).
Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980).
Gibeaux, R. et al. Electron tomography of the microtubule cytoskeleton in multinucleated hyphae of Ashbya gossypii. J. Cell Sci. 125, 5830–5839 (2012).
Barrero, D. J. et al. Centromeres in the thermotolerant yeast K. marxianus mediate attachment to a single microtubule. Chromosome Res. 33, 14 (2025).
Shen, X.-X. et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175, 1533–1545 (2018).
Saunders, M., Fitzgerald-Hayes, M. & Bloom, K. Chromatin structure of altered yeast centromeres. Proc. Natl Acad. Sci. USA 85, 175–179 (1988).
Meraldi, P., McAinsh, A., Rheinbay, E. & Sorger, P. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7, R23 (2006).
Helsen, J. & Ramachandran, K. PCAn v1.0. Zenodo https://doi.org/10.5281/zenodo.17293587 (2025).
Xiao, H. et al. Molecular basis of CENP-C association with the CENP-A nucleosome at yeast centromeres. Genes Dev. 31, 1958–1972 (2017).
Lee, P. D., Wei, H., Tan, D. & Harrison, S. C. Structure of the centromere binding factor 3 complex from Kluyveromyces lactis. J. Mol. Biol. 431, 4444–4454 (2019).
Szánthó, L. L. et al. A timetree of fungi dated with fossils and horizontal gene transfers. Nat. Ecol. Evol. 9, 1989–2001 (2025).
Larsen, N. B. et al. Stalled replication forks generate a distinct mutational signature in yeast. Proc. Natl Acad. Sci. USA 114, 9665–9670 (2017).
Greenfeder, S. A. & Newlon, C. S. Replication forks pause at yeast centromeres. Mol. Cell. Biol. 12, 4056–4066 (1992).
Pan, J. et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731 (2011).
Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).
Dendooven, T. et al. Cryo-EM structure of the complete inner kinetochore of the budding yeast point centromere. Sci. Adv. 9, eadg7480 (2023).
Mellor, J. et al. CPF1, a yeast protein which functions in centromeres and promoters. EMBO J. 9, 4017–4026 (1990).
Elphinstone, C., Elphinstone, R., Todesco, M. & Rieseberg, L. RepeatOBserver: tandem repeat visualization and putative centromere detection. Mol. Ecol. Resour. 25, e14084 (2025).
Xu, D. et al. CentIER: accurate centromere identification for plant genomes. Plant Commun. 5, 101046 (2024).
Mastrorosa, F. K. et al. Identification and annotation of centromeric hypomethylated regions with CDR-Finder. Bioinformatics 40, btae733 (2024).
Gao, S. et al. HiCAT: a tool for automatic annotation of centromere structure. Genome Biol. 24, 58 (2023).
Arora, U. P. & Dumont, B. L. Molecular evolution of the mammalian kinetochore complex. Preprint at bioRxiv https://doi.org/10.1101/2024.06.27.600994 (2024).
Malik, H. S. & Henikoff, S. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157, 1293–1298 (2001).
Vermaak, D., Hayden, H. S. & Henikoff, S. Centromere targeting element within the histone fold domain of Cid. Mol. Cell. Biol. 22, 7553–7561 (2002).
Baker, R. E. & Rogers, K. Phylogenetic analysis of fungal centromere H3 proteins. Genetics 174, 1481–1492 (2006).
Ravi, M. et al. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186, 461–471 (2010).
Kipling, D. & Warburton, P. E. Centromeres, CENP-B and Tigger too. Trends Genet. 13, 141–145 (1997).
Gamba, R. & Fachinetti, D. From evolution to function: two sides of the same CENP-B coin? Exp. Cell Res. 390, 111959 (2020).
Sankaranarayanan, S. R. et al. Loss of centromere function drives karyotype evolution in closely related Malassezia species. eLife 9, e53944 (2020).
Maeda, Y. et al. Chromosome-scale genome assembly of the marine oleaginous diatom Fistulifera solaris. Mar. Biotechnol. 2, 788–800 (2022).
Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001).
Bravo Núñez, M. A., Sabbarini, I. M., Eide, L. E., Unckless, R. L. & Zanders, S. E. Atypical meiosis can be adaptive in outcrossed Schizosaccharomyces pombe due to wtf meiotic drivers. eLife 9, e57936 (2020).
Cieśliński, K. & Ries, J. The yeast kinetochore — structural insights from optical microscopy. Curr. Opin. Chem. Biol. 20, 1–8 (2014).
Kobayashi, N. et al. Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres. Curr. Biol. 25, 2026–2033 (2015).
Kumar, S. et al. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174 (2022).
Pontes, A., Hutzler, M., Brito, P. H. & Sampaio, J. P. Revisiting the taxonomic synonyms and populations of Saccharomyces cerevisiae—phylogeny, phenotypes, ecology and domestication. Microorganisms 8, 903 (2020).
Peter, J. et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339–344 (2018).
Almeida, P. et al. A population genomics insight into the Mediterranean origins of wine yeast domestication. Mol. Ecol. 24, 5412–5427 (2015).
de Almeida, E. L. M. et al. Genome assembly and variant analysis of two Saccharomyces cerevisiae strains isolated from stingless bee pollen. Gene 927, 148722 (2024).
Preiss, R. et al. European farmhouse brewing yeasts form a distinct genetic group. Appl. Microbiol. Biotechnol. 108, 430 (2024).
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).
Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).
Lam, H. Y. I. Chokyotager/ORFFinder. GitHub https://github.com/Chokyotager/ORFFinder (2021).
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
Byrne, K. P. & Wolfe, K. H. The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15, 1456–1461 (2005).
Opulente, D. A. et al. Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts. Science 384, eadj4503 (2024).
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 — approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).
Lemoine, F. & Gascuel, O. Gotree/Goalign: toolkit and Go API to facilitate the development of phylogenetic workflows. NAR Genom. Bioinform. 3, lqab075 (2021).
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992).
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl Acad. Sci. USA 109, 19333–19338 (2012).
Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).
Hays, M., Young, J. M., Levan, P. F. & Malik, H. S. A natural variant of the essential host gene MMS21 restricts the parasitic 2-micron plasmid in Saccharomyces cerevisiae. eLife 9, e62337 (2020).
Liachko, I. & Dunham, M. J. An autonomously replicating sequence for use in a wide range of budding yeasts. FEMS Yeast Res. 14, 364–367 (2014).
Helsen, J., Ramachandran, K., Sherlock, G. & Dey, G. Progressive coevolution of the yeast centromere and kinetochore. Figshare https://doi.org/10.6084/m9.figshare.c.7630151 (2025).
Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).
Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).
Parker, J. et al. Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502, 228–231 (2013).
Cicconardi, F., Marcatili, P., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Mol. Phylogenet. Evol. 112, 230–243 (2017).
Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).
Kosakovsky Pond, S. L., Wisotsky, S. R., Escalante, A., Magalis, B. R. & Weaver, S. Contrast-FEL—a test for differences in selective pressures at individual sites among clades and sets of branches. Mol. Biol. Evol. 38, 1184–1198 (2021).
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).
Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017).
Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 48, D570–D578 (2020).
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).
Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).
Marcet-Houben, M., Księżopolska, E. & Gabaldón, T. Chromosome level assemblies of Nakaseomyces (Candida) bracarensis uncover two distinct clades and define its adhesin repertoire. BMC Genomics 25, 1053 (2024).
Belloch, C., Barrio, E., García, M. D. & Querol, A. Inter- and intraspecific chromosome pattern variation in the yeast genus Kluyveromyces. Yeast 14, 1341–1354 (1998).

