Thursday, December 18, 2025
No menu items!
HomeNatureProgrammable 200 GOPS Hopfield-inspired photonic Ising machine

Programmable 200 GOPS Hopfield-inspired photonic Ising machine

  • Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363–379 (2022).

    Article 

    Google Scholar
     

  • Hamerly, R. et al. Experimental investigation of performance differences between coherent Ising machines and a quantum annealer. Sci. Adv. 5, eaau0823 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).

    Article 

    Google Scholar
     

  • Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ising, E. Beitrag zur theorie des ferromagnetismus. Z. Physik 31, 253–258 (1925).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Budrikis, Z. 100 years of the Ising model. Nat. Rev. Phys. 6, 530 (2024).

    Article 

    Google Scholar
     

  • Garey, M. R. & Johnson, D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman and Company, 1979).

  • McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).

    Article 

    Google Scholar
     

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Approximate and stochastic Ising machines. IEEE Nanotechnol. Mag. 19, 44–53 (2025).

    Article 

    Google Scholar
     

  • Gao, Y. et al. Photonic Ising machines for combinatorial optimization problems. Appl. Phys. Rev. 11, 041307 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kalinin, K. P. & Berloff, N. G. Computational complexity continuum within Ising formulation of NP problems. Commun. Phys. 5, 20 (2022).

    Article 

    Google Scholar
     

  • Lin, Z. et al. 120 GOPS photonic tensor core in thin-film lithium niobate for inference and in situ training. Nat. Commun. 15, 9081 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Scalable on-chip optoelectronic Ising machine utilizing thin-film lithium niobate photonics. ACS Photonics 11, 1703–1714 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Nymeyer, H., García, A. E. & Onuchic, J. N. Folding funnels and frustration in off-lattice minimalist protein landscapes. Proc. Natl Acad. Sci. USA 95, 5921–5928 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pierangeli, D., Marcucci, G. & Conti, C. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett. 122, 213902 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Honjo, T. et al. 100,000-spin coherent Ising machine. Sci. Adv. 7, eabh0952 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irbäck, A., Knuthson, L., Mohanty, S. & Peterson, C. Folding lattice proteins with quantum annealing. Phys. Rev. Res. 4, 043013 (2022).

    Article 

    Google Scholar
     

  • Böhm, F., Verschaffelt, G. & Sande, G. A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems. Nat. Commun. 10, 3538 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Estarán, J. M. et al. Sub-baudrate sampling at DAC and ADC: toward 200G per lane IM/DD systems. J. Lightwave Technol. 37, 1536–1542 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J., Ebler, D., Wong, K. M., Hui, D. S. W. & Sun, J. Bifurcation behaviors shape how continuous physical dynamics solves discrete Ising optimization. Nat. Commun. 14, 2510 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Silicon microring synapses enable photonic deep learning beyond 9-bit precision. Optica 9, 579–584 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Böhm, F., Alonso-Urquijo, D., Verschaffelt, G. & Van der Sande, G. Noise-injected analog Ising machines enable ultrafast statistical sampling and machine learning. Nat. Commun. 13, 5847 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benlic, U. & Hao, J. K. Breakout local search for the Max-Cut problem. Eng. Appl. Artif. Intell. 26, 1162–1173 (2013).

    Article 

    Google Scholar
     

  • Leleu, T. et al. Scaling advantage of chaotic amplitude control for high-performance combinatorial optimization. Commun. Phys. 4, 266 (2021).

    Article 

    Google Scholar
     

  • Kalinin, K. P. et al. Analog optical computer for AI inference and combinatorial optimization. Nature 645, 354–361 (2025).

  • Pramanik, S., Chatterjee, S. & Oza, H. Convergence analysis of opto-electronic oscillator based coherent Ising machines. In Proc. 2024 16th International Conference on Communication Systems & Networks (COMSNETS) 1076–1081 (IEEE, 2024).

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J., Fang, Y. & Ruan, Z. Antiferromagnetic spatial photonic Ising machine through optoelectronic correlation computing. Commun. Phys. 4, 242 (2021).

    Article 

    Google Scholar
     

  • Prabhakar, A. et al. Optimization with photonic wave-based annealers. Philos. Trans. A Math. Phys. Eng. Sci. 381, 20210409 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Asproni, L., Caputo, D., Silva, B., Fazzi, G. & Magagnini, M. Accuracy and minor embedding in subQUBO decomposition with fully connected large problems: a case study about the number partitioning problem. Quantum Mach. Intell. 2, 4 (2020).

    Article 

    Google Scholar
     

  • Xu, X. Y. et al. A scalable photonic computer solving the subset sum problem. Sci. Adv. 6, eaay5853 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cen, Q. et al. Large-scale coherent Ising machine based on optoelectronic parametric oscillator. Light Sci. Appl. 11, 333 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tariq, M., Al-Dweik, A., Mohammad, B., Saleh, H. & Stouraitis, T. Computational power evaluation for energy-constrained wireless communications systems. IEEE Open J. Commun. Soc. 1, 308–319 (2020).

    Article 

    Google Scholar
     

  • Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McFeely, S. Introducing WaveLogic 6: another industry first from Ciena. Ciena https://www.ciena.com/insights/blog/2023/introducing-wavelogic-6?utmsource=blog&utmmedium=social (2023).

  • Pappas, C. et al. Reaching the peta-computing: 163.8 TOPS through multidimensional AWGR-based accelerators. J. Lightwave Technol. 43, 1773–1785 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bai, Y. et al. Photonic multiplexing techniques for neuromorphic computing. Nanophotonics 12, 795–817 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • NVIDIA H100 Tensor Core GPU Architecture White Paper (NVIDIA, 2023); https://resources.nvidia.com/en-us-hopper-architecture/nvidia-h100-tensor-c.

  • Gill, S. S. et al. in Quantum Computing: Principles and Paradigms (eds Buyya, R. & Gill, S. S.) 19–42 (Morgan Kaufmann, 2025).

  • De Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hua, S. et al. An integrated large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takata, K. et al. A 16-bit coherent Ising machine for one-dimensional ring and cubic graph problems. Sci. Rep. 6, 34089 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Babaeian, M. et al. A single shot coherent Ising machine based on a network of injection-locked multicore fiber lasers. Nat. Commun. 10, 3516 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, L., Mi, Z., Huang, J. & Ruan, Z. Wavelength-division multiplexing optical Ising simulator enabling fully programmable spin couplings and external magnetic fields. Sci. Adv. 9, eadg6238 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, X., Zhang, W., Wang, S., Yang, X. & He, Z. 20736-node weighted max-cut problem solving by quadrature photonic spatial Ising machine. Sci. China Inf. Sci. 66, 229301 (2023).

    Article 

    Google Scholar
     

  • Ouyang, J. et al. On-demand photonic Ising machine with simplified Hamiltonian calculation by phase encoding and intensity detection. Commun. Phys. 7, 168 (2024).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments