Friday, June 13, 2025
No menu items!
HomeNatureProbing phonon transport dynamics across an interface by electron microscopy

Probing phonon transport dynamics across an interface by electron microscopy

  • Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Pop, E., Sinha, S. & Goodson, K. E. Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94, 1587–1601 (2006).

    Article 

    Google Scholar
     

  • An, M. et al. Generalized two-temperature model for coupled phonons in nanosized graphene. Nano Lett. 17, 5805–5810 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lu, Z., Vallabhaneni, A., Cao, B. & Ruan, X. Phonon branch-resolved electron-phonon coupling and the multitemperature model. Phys. Rev. B 98, 134309 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Feng, T. et al. Spectral analysis of nonequilibrium molecular dynamics: spectral phonon temperature and local nonequilibrium in thin films and across interfaces. Phys. Rev. B 95, 195202 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Feng, T., Zhong, Y., Shi, J. & Ruan, X. Unexpected high inelastic phonon transport across solid-solid interface: modal nonequilibrium molecular dynamics simulations and Landauer analysis. Phys. Rev. B 99, 045301 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Giri, A. & Hopkins, P. E. A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30, 1903857 (2020).

    Article 

    Google Scholar
     

  • Idrobo, J. C. et al. Temperature measurement by a nanoscale electron probe using energy gain and loss spectroscopy. Phys. Rev. Lett. 120, 095901 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lagos, M. J. & Batson, P. E. Thermometry with subnanometer resolution in the electron microscope using the principle of detailed balancing. Nano Lett. 18, 4556–4563 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kikkawa, J. & Kimoto, K. Optical and acoustic phonon temperature measurements using electron nanoprobe and electron energy loss spectroscopy. Phys. Rev. B 106, 195431 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, D.-S. & Cao, B.-Y. Phonon thermal transport and its tunability in GaN for near-junction thermal management of electronics: a review. Int. J. Heat Mass Transf. 200, 123497 (2023).

    Article 

    Google Scholar
     

  • Tavakkoli, F., Ebrahimi, S., Wang, S. & Vafai, K. Analysis of critical thermal issues in 3D integrated circuits. Int. J. Heat Mass Transf. 97, 337–352 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Y., Cao, B.-Y. & Zhou, Y. Near-interface effects on interfacial phonon transport: competition between phonon-phonon interference and phonon-phonon scattering. Int. J. Heat Mass Transf. 232, 125943 (2024).

    Article 

    Google Scholar
     

  • Cheng, Z. et al. Experimental observation of localized interfacial phonon modes. Nat. Commun. 12, 6901 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raleva, K., Vasileska, D., Hossain, A., Yoo, S.-K. & Goodnick, S. M. Study of self-heating effects in SOI and conventional MOSFETs with electro-thermal particle-based device simulator. J. Comput. Electron. 11, 106–117 (2012).

    Article 

    Google Scholar
     

  • Sinha, S. & Goodson, K. E. Thermal conduction in sub-100 nm transistors. Microelectron. J. 37, 1148–1157 (2006).

    Article 

    Google Scholar
     

  • Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Chen, G. Nanoscale Energy Transport And Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford Univ. Press, 2005).

  • Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Volz, S. G. & Chen, G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys. Rev. B 61, 2651–2656 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Y. et al. Unification of nonequilibrium molecular dynamics and the mode-resolved phonon Boltzmann equation for thermal transport simulations. Phys. Rev. B 101, 155308 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, P., Qian, X. & Yang, R. Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, A. J., Cheaito, R. & Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Olson, D. H., Braun, J. L. & Hopkins, P. E. Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale. J. Appl. Phys. 126, 150901 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Shi, L. et al. Thermal probing of energy dissipation in current-carrying carbon nanotubes. J. Appl. Phys. 105, 104306 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Tang, X., Xu, S. & Wang, X. Nanoscale probing of thermal, stress, and optical fields under near-field laser heating. PLoS One 8, e58030 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D., Xie, R., Yang, N., Li, B. & Thong, J. T. L. Profiling nanowire thermal resistance with a spatial resolution of nanometers. Nano Lett. 14, 806–812 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gordiz, K. & Henry, A. Phonon transport at interfaces: determining the correct modes of vibration. J. Appl. Phys. 119, 015101 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wu, M. et al. Effects of localized interface phonons on heat conductivity in ingredient heterogeneous solids. Chin. Phys. Lett. 40, 036801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Qi, R. et al. Measuring phonon dispersion at an interface. Nature 599, 399–403 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hoglund, E. R. et al. Emergent interface vibrational structure of oxide superlattices. Nature 601, 556–561 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, B. et al. Atomic-resolution mapping of localized phonon modes at grain boundaries. Nano Lett. 23, 5975–5980 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hoglund, E. R. et al. Nonequivalent atomic vibrations at interfaces in a polar superlattice. Adv. Mater. 36, 2402925 (2024).

    Article 

    Google Scholar
     

  • Xu, M. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Senga, R. et al. Imaging of isotope diffusion using atomic-scale vibrational spectroscopy. Nature 603, 68–72 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dwyer, C. et al. Electron-beam mapping of vibrational modes with nanometer spatial resolution. Phys. Rev. Lett. 117, 256101 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, Z. The ‘frozen-lattice’ approach for incoherent phonon excitation in electron scattering. How accurate is it? Acta Crystallogr. A 54, 460–467 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Hu, S., Zhao, C. & Gu, X. Phonon non-equilibrium effects on interface thermal resistance between graphene and substrates. Int. J. Therm. Sci. 196, 108725 (2024).

    Article 

    Google Scholar
     

  • Rurali, R. et al. Heat transport through a solid–solid junction: the interface as an autonomous thermodynamic system. Phys. Chem. Chem. Phys. 18, 13741–13745 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yasaei, P. et al. Bimodal phonon scattering in graphene grain boundaries. Nano Lett. 15, 4532–4540 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Seyf, H. R., Gordiz, K., DeAngelis, F. & Henry, A. Using Green-Kubo modal analysis (GKMA) and interface conductance modal analysis (ICMA) to study phonon transport with molecular dynamics. J. Appl. Phys. 125, 081101 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, H., Zhang, G. & Zhang, Y.-W. Effects of localized phonons on interfacial thermal conductance. Phys. Rev. B 106, 195435 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Giri, A. & Hopkins, P. E. Role of interfacial mode coupling of optical phonons on thermal boundary conductance. Sci. Rep. 7, 11011 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pollack, G. L. Kapitza resistance. Rev. Mod. Phys. 41, 48–81 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Ghosh, T., Dutta, M., Sarkar, D. & Biswas, K. Insights into low thermal conductivity in inorganic materials for thermoelectrics. J. Am. Chem. Soc. 144, 10099–10118 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. & Zheng, Z. Heat conduction and reversed thermal diode: the interface effect. Phys. Rev. E 81, 011114 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Yang, H. et al. Phonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface. Nature 635, 332–336 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. & Regan, B. C. Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28, 3695–3698 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mecklenburg, M. et al. Nanoscale temperature mapping in operating microelectronic devices. Science 347, 629–632 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sääskilahti, K., Oksanen, J., Tulkki, J. & Volz, S. Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Phys. Rev. B 90, 134312 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Sääskilahti, K., Oksanen, J., Tulkki, J. & Volz, S. Spectral mapping of heat transfer mechanisms at liquid-solid interfaces. Phys. Rev. E 93, 052141 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Giri, A., Braun, J. L. & Hopkins, P. E. Implications of interfacial bond strength on the spectral contributions to thermal boundary conductance across solid, liquid, and gas interfaces: a molecular dynamics study. J. Phys. Chem. C 120, 24847–24856 (2016).

    Article 

    Google Scholar
     

  • Ma, Y. et al. Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water. Carbon 135, 263–269 (2018).

    Article 

    Google Scholar
     

  • Hung, S.-W., Hu, S. & Shiomi, J. Spectral control of thermal boundary conductance between copper and carbon crystals by self-assembled monolayers. ACS Appl. Electron. Mater. 1, 2594–2601 (2019).

    Article 

    Google Scholar
     

  • Malis, T., Cheng, S. C. & Egerton, R. F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200 (1988).

    Article 
    PubMed 

    Google Scholar
     

  • Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, 2011).

  • Zhou, J. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500–503 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Levin, B. D. A., Venkatraman, K., Haiber, D. M., March, K. & Crozier, P. A. Background modelling for quantitative analysis in vibrational EELS. Microsc. Microanal. 25, 674–675 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package – Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fan, Z. et al. GPUMD: a package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. J. Chem. Phys. 157, 114801 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Qi, Z. et al. Interfacial optimization for AlN/diamond heterostructures via machine learning potential molecular dynamics investigation of the mechanical properties. ACS Appl. Mater. Interfaces 16, 27998–28007 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • So, S. & Lee, J.-H. Unraveling interfacial thermal transport in β-Ga2O3/h-BN van der Waals heterostructures. Mater. Today Phys. 46, 101506 (2024).

    Article 

    Google Scholar
     

  • Sun, Z. et al. Insight into interfacial heat transfer of β-Ga2O3/diamond heterostructures via the machine learning potential. ACS Appl. Mater. Interfaces 16, 31666–31676 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Petretto, G. et al. High-throughput density-functional perturbation theory phonons for inorganic materials. Sci. Data 5, 180065 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbalinardo, G., Chen, Z., Lundgren, N. W. & Donadio, D. Efficient anharmonic lattice dynamics calculations of thermal transport in crystalline and disordered solids. J. Appl. Phys. 128, 135104 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Fransson, E., Slabanja, M., Erhart, P. & Wahnström, G. dynasor—a tool for extracting dynamical structure factors and current correlation functions from molecular dynamics simulations. Adv. Theory Simul. 4, 2000240 (2021).

    Article 

    Google Scholar
     

  • Mao, R. & Liu, F. Probing cross-interface phonon transport dynamics by electron microscopy. Zenodo https://doi.org/10.5281/zenodo.15195097 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments