Cahill, D. G. et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014).
Pop, E., Sinha, S. & Goodson, K. E. Heat generation and transport in nanometer-scale transistors. Proc. IEEE 94, 1587–1601 (2006).
An, M. et al. Generalized two-temperature model for coupled phonons in nanosized graphene. Nano Lett. 17, 5805–5810 (2017).
Lu, Z., Vallabhaneni, A., Cao, B. & Ruan, X. Phonon branch-resolved electron-phonon coupling and the multitemperature model. Phys. Rev. B 98, 134309 (2018).
Feng, T. et al. Spectral analysis of nonequilibrium molecular dynamics: spectral phonon temperature and local nonequilibrium in thin films and across interfaces. Phys. Rev. B 95, 195202 (2017).
Feng, T., Zhong, Y., Shi, J. & Ruan, X. Unexpected high inelastic phonon transport across solid-solid interface: modal nonequilibrium molecular dynamics simulations and Landauer analysis. Phys. Rev. B 99, 045301 (2019).
Giri, A. & Hopkins, P. E. A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30, 1903857 (2020).
Idrobo, J. C. et al. Temperature measurement by a nanoscale electron probe using energy gain and loss spectroscopy. Phys. Rev. Lett. 120, 095901 (2018).
Lagos, M. J. & Batson, P. E. Thermometry with subnanometer resolution in the electron microscope using the principle of detailed balancing. Nano Lett. 18, 4556–4563 (2018).
Kikkawa, J. & Kimoto, K. Optical and acoustic phonon temperature measurements using electron nanoprobe and electron energy loss spectroscopy. Phys. Rev. B 106, 195431 (2022).
Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).
Tang, D.-S. & Cao, B.-Y. Phonon thermal transport and its tunability in GaN for near-junction thermal management of electronics: a review. Int. J. Heat Mass Transf. 200, 123497 (2023).
Tavakkoli, F., Ebrahimi, S., Wang, S. & Vafai, K. Analysis of critical thermal issues in 3D integrated circuits. Int. J. Heat Mass Transf. 97, 337–352 (2016).
Xu, Y., Cao, B.-Y. & Zhou, Y. Near-interface effects on interfacial phonon transport: competition between phonon-phonon interference and phonon-phonon scattering. Int. J. Heat Mass Transf. 232, 125943 (2024).
Cheng, Z. et al. Experimental observation of localized interfacial phonon modes. Nat. Commun. 12, 6901 (2021).
Raleva, K., Vasileska, D., Hossain, A., Yoo, S.-K. & Goodnick, S. M. Study of self-heating effects in SOI and conventional MOSFETs with electro-thermal particle-based device simulator. J. Comput. Electron. 11, 106–117 (2012).
Sinha, S. & Goodson, K. E. Thermal conduction in sub-100 nm transistors. Microelectron. J. 37, 1148–1157 (2006).
Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).
Chen, G. Nanoscale Energy Transport And Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford Univ. Press, 2005).
Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).
Volz, S. G. & Chen, G. Molecular-dynamics simulation of thermal conductivity of silicon crystals. Phys. Rev. B 61, 2651–2656 (2000).
Hu, Y. et al. Unification of nonequilibrium molecular dynamics and the mode-resolved phonon Boltzmann equation for thermal transport simulations. Phys. Rev. B 101, 155308 (2020).
Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).
Jiang, P., Qian, X. & Yang, R. Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018).
Schmidt, A. J., Cheaito, R. & Chiesa, M. A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009).
Olson, D. H., Braun, J. L. & Hopkins, P. E. Spatially resolved thermoreflectance techniques for thermal conductivity measurements from the nanoscale to the mesoscale. J. Appl. Phys. 126, 150901 (2019).
Shi, L. et al. Thermal probing of energy dissipation in current-carrying carbon nanotubes. J. Appl. Phys. 105, 104306 (2009).
Tang, X., Xu, S. & Wang, X. Nanoscale probing of thermal, stress, and optical fields under near-field laser heating. PLoS One 8, e58030 (2013).
Liu, D., Xie, R., Yang, N., Li, B. & Thong, J. T. L. Profiling nanowire thermal resistance with a spatial resolution of nanometers. Nano Lett. 14, 806–812 (2014).
Gordiz, K. & Henry, A. Phonon transport at interfaces: determining the correct modes of vibration. J. Appl. Phys. 119, 015101 (2016).
Wu, M. et al. Effects of localized interface phonons on heat conductivity in ingredient heterogeneous solids. Chin. Phys. Lett. 40, 036801 (2023).
Qi, R. et al. Measuring phonon dispersion at an interface. Nature 599, 399–403 (2021).
Hoglund, E. R. et al. Emergent interface vibrational structure of oxide superlattices. Nature 601, 556–561 (2022).
Haas, B. et al. Atomic-resolution mapping of localized phonon modes at grain boundaries. Nano Lett. 23, 5975–5980 (2023).
Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).
Hoglund, E. R. et al. Nonequivalent atomic vibrations at interfaces in a polar superlattice. Adv. Mater. 36, 2402925 (2024).
Xu, M. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023).
Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).
Senga, R. et al. Imaging of isotope diffusion using atomic-scale vibrational spectroscopy. Nature 603, 68–72 (2022).
Dwyer, C. et al. Electron-beam mapping of vibrational modes with nanometer spatial resolution. Phys. Rev. Lett. 117, 256101 (2016).
Wang, Z. The ‘frozen-lattice’ approach for incoherent phonon excitation in electron scattering. How accurate is it? Acta Crystallogr. A 54, 460–467 (1998).
Hu, S., Zhao, C. & Gu, X. Phonon non-equilibrium effects on interface thermal resistance between graphene and substrates. Int. J. Therm. Sci. 196, 108725 (2024).
Rurali, R. et al. Heat transport through a solid–solid junction: the interface as an autonomous thermodynamic system. Phys. Chem. Chem. Phys. 18, 13741–13745 (2016).
Yasaei, P. et al. Bimodal phonon scattering in graphene grain boundaries. Nano Lett. 15, 4532–4540 (2015).
Seyf, H. R., Gordiz, K., DeAngelis, F. & Henry, A. Using Green-Kubo modal analysis (GKMA) and interface conductance modal analysis (ICMA) to study phonon transport with molecular dynamics. J. Appl. Phys. 125, 081101 (2019).
Zhou, H., Zhang, G. & Zhang, Y.-W. Effects of localized phonons on interfacial thermal conductance. Phys. Rev. B 106, 195435 (2022).
Giri, A. & Hopkins, P. E. Role of interfacial mode coupling of optical phonons on thermal boundary conductance. Sci. Rep. 7, 11011 (2017).
Pollack, G. L. Kapitza resistance. Rev. Mod. Phys. 41, 48–81 (1969).
Ghosh, T., Dutta, M., Sarkar, D. & Biswas, K. Insights into low thermal conductivity in inorganic materials for thermoelectrics. J. Am. Chem. Soc. 144, 10099–10118 (2022).
Wang, J. & Zheng, Z. Heat conduction and reversed thermal diode: the interface effect. Phys. Rev. E 81, 011114 (2010).
Yang, H. et al. Phonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface. Nature 635, 332–336 (2024).
White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. & Regan, B. C. Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir 28, 3695–3698 (2012).
Mecklenburg, M. et al. Nanoscale temperature mapping in operating microelectronic devices. Science 347, 629–632 (2015).
Sääskilahti, K., Oksanen, J., Tulkki, J. & Volz, S. Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Phys. Rev. B 90, 134312 (2014).
Sääskilahti, K., Oksanen, J., Tulkki, J. & Volz, S. Spectral mapping of heat transfer mechanisms at liquid-solid interfaces. Phys. Rev. E 93, 052141 (2016).
Giri, A., Braun, J. L. & Hopkins, P. E. Implications of interfacial bond strength on the spectral contributions to thermal boundary conductance across solid, liquid, and gas interfaces: a molecular dynamics study. J. Phys. Chem. C 120, 24847–24856 (2016).
Ma, Y. et al. Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water. Carbon 135, 263–269 (2018).
Hung, S.-W., Hu, S. & Shiomi, J. Spectral control of thermal boundary conductance between copper and carbon crystals by self-assembled monolayers. ACS Appl. Electron. Mater. 1, 2594–2601 (2019).
Malis, T., Cheng, S. C. & Egerton, R. F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200 (1988).
Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, 2011).
Zhou, J. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500–503 (2019).
Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).
Levin, B. D. A., Venkatraman, K., Haiber, D. M., March, K. & Crozier, P. A. Background modelling for quantitative analysis in vibrational EELS. Microsc. Microanal. 25, 674–675 (2019).
Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package – Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).
Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Fan, Z. et al. GPUMD: a package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations. J. Chem. Phys. 157, 114801 (2022).
Qi, Z. et al. Interfacial optimization for AlN/diamond heterostructures via machine learning potential molecular dynamics investigation of the mechanical properties. ACS Appl. Mater. Interfaces 16, 27998–28007 (2024).
So, S. & Lee, J.-H. Unraveling interfacial thermal transport in β-Ga2O3/h-BN van der Waals heterostructures. Mater. Today Phys. 46, 101506 (2024).
Sun, Z. et al. Insight into interfacial heat transfer of β-Ga2O3/diamond heterostructures via the machine learning potential. ACS Appl. Mater. Interfaces 16, 31666–31676 (2024).
Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Petretto, G. et al. High-throughput density-functional perturbation theory phonons for inorganic materials. Sci. Data 5, 180065 (2018).
Barbalinardo, G., Chen, Z., Lundgren, N. W. & Donadio, D. Efficient anharmonic lattice dynamics calculations of thermal transport in crystalline and disordered solids. J. Appl. Phys. 128, 135104 (2020).
Fransson, E., Slabanja, M., Erhart, P. & Wahnström, G. dynasor—a tool for extracting dynamical structure factors and current correlation functions from molecular dynamics simulations. Adv. Theory Simul. 4, 2000240 (2021).
Mao, R. & Liu, F. Probing cross-interface phonon transport dynamics by electron microscopy. Zenodo https://doi.org/10.5281/zenodo.15195097 (2025).