Wednesday, July 16, 2025
No menu items!
HomeNaturePreparation of a neutral nitrogen allotrope hexanitrogen C2h-N6

Preparation of a neutral nitrogen allotrope hexanitrogen C2h-N6

  • Christe, K. O. Polynitrogen chemistry enters the ring. Science 355, 351–351 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Stabilization of hexazine rings in potassium polynitride at high pressure. Nat. Chem. 14, 794–800 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ninet, S. Benzene-like N6 hexazine rings. Nat. Chem. 15, 595–596 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Y. & Adeniyi, A. O. Solid nitrogen and nitrogen‐rich compounds as high‐energy‐density materials. Phys. Status Solidi B 258, 2000588 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Klapötke, T. M. & Witkowski, T. G. Nitrogen-rich energetic 1,2,5-oxadiazole-tetrazole-based energetic materials. Propellants Explos. Pyrotech. 40, 366–373 (2015).

    Article 

    Google Scholar
     

  • Nguyen, M. T. Polynitrogen compounds: 1. Structure and stability of N4 and N5 systems. Coord. Chem. Rev. 244, 93–113 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Zarko, V. E. Searching for ways to create energetic materials based on polynitrogen compounds (review). Combust. Explos. Shock Waves 46, 121–131 (2010).

    Article 

    Google Scholar
     

  • Larson, Å., Larsson, M. & Östmark, H. Theoretical study of rectangular (D2h) N4. J. Chem. Soc. Faraday Trans. 93, 2963–2966 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Glukhovtsev, M. N. & von Ragué Schleyer, P. Structures, bonding and energies of N6 isomers. Chem. Phys. Lett. 198, 547–554 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Glukhovtsev, M. N., Jiao, H. & von Ragué Schleyer, P. Besides N2, what is the most stable molecule composed only of nitrogen atoms? Inorg. Chem. 35, 7124–7133 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strout, D. L. Acyclic N10 fails as a high energy density material. J. Phys. Chem. A 106, 816–818 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Hirshberg, B., Gerber, R. B. & Krylov, A. I. Calculations predict a stable molecular crystal of N8. Nat. Chem. 6, 52–56 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strout, D. L. Cage isomers of N14 and N16: nitrogen molecules that are not a multiple of six. J. Phys. Chem. A 108, 10911–10916 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Samartzis, P. C. & Wodtke, A. M. All-nitrogen chemistry: how far are we from N60? Int. Rev. Phys. Chem. 25, 527–552 (2010).

    Article 

    Google Scholar
     

  • Mikhailov, O. V. Molecular and electronic structures of neutral polynitrogens: review on the theory and experiment in 21st century. Int. J. Mol. Sci. 23, 2841 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thrush, B. A. & Norrish, R. G. W. The detection of free radicals in the high intensity photolysis of hydrogen azide. Proc. R. Soc. Lond. A 235, 143–147 (1956).

    Article 
    ADS 

    Google Scholar
     

  • Beaman, R. A., Nelson, T., Richards, D. S. & Setser, D. W. Observation of azido radical by laser-induced fluorescence. J. Phys. Chem. 91, 6090–6092 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Cacace, F., de Petris, G. & Troiani, A. Experimental detection of tetranitrogen. Science 295, 480–481 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayon, E. & Simic, M. Absorption spectra and kinetics of the intermediate produced from the decay of azide radicals. J. Am. Chem. Soc. 92, 7486–7487 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H., Wong, N.-B., Zhou, G. & Tian, A. Theoretical study on “multilayer” nitrogen cages. J. Phys. Chem. A 110, 3845–3852 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sedgi, I. & Kozuch, S. Quantum tunneling instability of the mythical hexazine and pentazine. Chem. Commun. 60, 2038–2041 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Schreiner, P. R. Quantum mechanical tunneling is essential to understanding chemical reactivity. Trends Chem. 2, 980–989 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Christe, K. O., Wilson, W. W., Sheehy, J. A. & Boatz, J. A. N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed. 38, 2004–2009 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Vij, A. et al. Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. J. Am. Chem. Soc. 123, 6308–6313 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vij, A., Pavlovich, J. G., Wilson, W. W., Vij, V. & Christe, K. O. Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5. Angew. Chem. Int. Ed. 41, 3051–3054 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Östmark, H. et al. Detection of pentazolate anion (cyclo-N5) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole. Chem. Phys. Lett. 379, 539–546 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, C. et al. Synthesis and characterization of the pentazolate anion cyclo-N5ˉ in (N5)6(H3O)3(NH4)4Cl. Science 355, 374–376 (2017).

  • Xu, Y. et al. A series of energetic metal pentazolate hydrates. Nature 549, 78–81 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y., Tian, L., Li, D., Wang, P. & Lu, M. A series of energetic cyclo-pentazolate salts: rapid synthesis, characterization, and promising performance. J. Mater. Chem. A 7, 12468–12479 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nat. Mater. 3, 558–563 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Benchafia, E. M. et al. Cubic gauche polymeric nitrogen under ambient conditions. Nat. Commun. 8, 930 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laniel, D. et al. Aromatic hexazine [N6]4− anion featured in the complex structure of the high-pressure potassium nitrogen compound K9N56. Nat. Chem. 15, 641–646 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greschner, M. J. et al. A new allotrope of nitrogen as high-energy density material. J. Phys. Chem. A 120, 2920–2925 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian, W. Y., Mardyukov, A. & Schreiner, P. R. Hexanitrogen (N6): a synthetic leap towards neutral nitrogen allotropes. Preprint at https://doi.org/10.26434/chemrxiv-2024-90vvx (2024).

  • Zeng, X. et al. Reaction of AgN3 with SOCl2: evidence for the formation of thionyl azide, SO(N3)2. Inorg. Chem. 43, 4799–4801 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raschig, F. Über Chlorazid N3Cl. Ber. Dtsch. Chem. Ges. 41, 4194–4195 (1908).

    Article 

    Google Scholar
     

  • Lyhs, B., Bläser, D., Wölper, C., Schulz, S. & Jansen, G. A comparison of the solid-state structures of halogen azides XN3 (X=Cl, Br, I). Angew. Chem. Int. Ed. 51, 12859–12863 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Buzek, P., Klapötke, T. M., von Ragué Schleyer, P., Tornieporth‐Oetting, I. C. & White, P. S. Iodine azide. Angew. Chem. Int. Ed. 32, 275–277 (1993).

    Article 

    Google Scholar
     

  • Shurvell, H. F. & Hyslop, D. W. Infrared spectrum of cyanogen azide. J. Chem. Phys. 52, 881–887 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pimental, G. C. & Charles, S. W. Infrared spectral perturbations in matrix experiments. Pure Appl. Chem. 7, 111–124 (1963).

    Article 

    Google Scholar
     

  • Zeng, X., Beckers, H. & Willner, H. Matrix isolation of two isomers of N4CO. Angew. Chem. Int. Ed. Engl. 50, 482–485 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tobita, M. & Bartlett, R. J. Structure and stability of N6 isomers and their spectroscopic characteristics. J. Phys. Chem. A 105, 4107–4113 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Gagliardi, L., Evangelisti, S., Barone, V. & Roos, B. O. On the dissociation of N6 into 3 N2 molecules. Chem. Phys. Lett. 320, 518–522 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huber, K. P. & Herzberg, G. in Molecular Spectra and Molecular Structure (eds Huber, K. P. & Herzberg, G.) Ch. 2, 8–689 (Springer, 1979).

  • Carlotti, M., Johns, J. W. C. & Trombetti, A. The ν5 fundamental bands of N2H2 and N2D2. Can. J. Phys. 52, 340–344 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brazier, C. R., Bernath, P. F., Burkholder, J. B. & Howard, C. J. Fourier transform spectroscopy of the ν3 band of the N3 radical. J. Chem. Phys. 89, 1762–1767 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bittererová, M., Östmark, H. & Brinck, T. Ab initio study of the ground state and the first excited state of the rectangular (D2h)N4 molecule. Chem. Phys. Lett. 347, 220–228 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Schreiner, P. R. Tunneling control of chemical reactions: the third reactivity paradigm. J. Am. Chem. Soc. 139, 15276–15283 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weggel, D. C. in Blast Protection of Civil Infrastructures and Vehicles Using Composites (ed. Uddin, N.) 3–43 (Woodhead Publishing, 2010).

  • Pople, J. A., Head‐Gordon, M. & Raghavachari, K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys. 87, 5968–5975 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bartlett, R. J. & Purvis, G. D. Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int. J. Mol. Sci. 14, 561–581 (1978).

    CAS 

    Google Scholar
     

  • Pople, J. A., Krishnan, R., Schlegel, H. B. & Binkley, J. S. Electron correlation theories and their application to the study of simple reaction potential surfaces. Int. J. Mol. Sci. 14, 545–560 (1978).

    CAS 

    Google Scholar
     

  • Neese, F. Software update: the ORCA program system—version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).

    Article 

    Google Scholar
     

  • Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16, Revision B.01 (Gaussian, Inc., 2016).

  • Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanton, J. F. et al. CFOUR, coupled-cluster techniques for computational chemistry, a quantum-chemical program package with the integral packages MOLECULE (J. Almlöf and PR Taylor), PROPS (PR Taylor) (2014).

  • Lu, T. & Chen, F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 38, 314–323 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 40, 2234–2241 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glendening, E. D., Landis, C. R. & Weinhold, F. Natural bond orbital methods. WIREs Comput. Mol. Sci. 2, 1–42 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. Gaussrate 17-B (Univ. Minnesota, 2017).

  • Garrett, B. C. & Truhlar, D. G. Generalized transition state theory. Bond energy-bond order method for canonical variational calculations with application to hydrogen atom transfer reactions. J. Am. Chem. Soc. 101, 4534–4548 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Garrett, B. C. & Truhlar, D. G. Criterion of minimum state density in the transition state theory of bimolecular reactions. J. Chem. Phys. 70, 1593–1598 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Garrett, B. C., Truhlar, D. G., Grev, R. S. & Magnuson, A. W. Improved treatment of threshold contributions in variational transition-state theory. J. Phys. Chem. 84, 1730–1748 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Truhlar, D. G., Issacson, A., Skodje, R. & Garrett, B. C. Additions and corrections – incorporation of quantum effects in generalized-transition-state theory. J. Phys. Chem. 87, 4554–4554 (1983).

    Article 

    Google Scholar
     

  • Zheng, J. et al. Polyrate-version 2017-C (Univ. Minnesota, 2017).

  • Tao, Y., Zou, W., Nanayakkara, S. & Kraka, E. LModeA-nano: a PyMOL plugin for calculating bond strength in solids, surfaces, and molecules via local vibrational mode analysis. J. Chem. Theory Comput. 18, 1821–1837 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Politzer, P., Martinez, J., Murray, J. S., Concha, M. C. & Toro-Labbé, A. An electrostatic interaction correction for improved crystal density prediction. Mol. Phys. 107, 2095–2101 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bader, R. F. W., Carroll, M. T., Cheeseman, J. R. & Chang, C. Properties of atoms in molecules: atomic volumes. J. Am. Chem. Soc. 109, 7968–7979 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Murray, J. S., Concha, M. C. & Politzer, P. Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol. Phys. 107, 89–97 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kamlet, M. J. & Jacobs, S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys. 48, 23–35 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prazyan, T. L. & Zhuravlev, Y. N. Computer simulation of the structure and electronic and detonation properties of energy materials. Combust. Explos. Shock Waves 53, 718–723 (2017).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments