Christe, K. O. Polynitrogen chemistry enters the ring. Science 355, 351–351 (2017).
Wang, Y. et al. Stabilization of hexazine rings in potassium polynitride at high pressure. Nat. Chem. 14, 794–800 (2022).
Ninet, S. Benzene-like N6 hexazine rings. Nat. Chem. 15, 595–596 (2023).
Yao, Y. & Adeniyi, A. O. Solid nitrogen and nitrogen‐rich compounds as high‐energy‐density materials. Phys. Status Solidi B 258, 2000588 (2021).
Klapötke, T. M. & Witkowski, T. G. Nitrogen-rich energetic 1,2,5-oxadiazole-tetrazole-based energetic materials. Propellants Explos. Pyrotech. 40, 366–373 (2015).
Nguyen, M. T. Polynitrogen compounds: 1. Structure and stability of N4 and N5 systems. Coord. Chem. Rev. 244, 93–113 (2003).
Zarko, V. E. Searching for ways to create energetic materials based on polynitrogen compounds (review). Combust. Explos. Shock Waves 46, 121–131 (2010).
Larson, Å., Larsson, M. & Östmark, H. Theoretical study of rectangular (D2h) N4. J. Chem. Soc. Faraday Trans. 93, 2963–2966 (1997).
Glukhovtsev, M. N. & von Ragué Schleyer, P. Structures, bonding and energies of N6 isomers. Chem. Phys. Lett. 198, 547–554 (1992).
Glukhovtsev, M. N., Jiao, H. & von Ragué Schleyer, P. Besides N2, what is the most stable molecule composed only of nitrogen atoms? Inorg. Chem. 35, 7124–7133 (1996).
Strout, D. L. Acyclic N10 fails as a high energy density material. J. Phys. Chem. A 106, 816–818 (2002).
Hirshberg, B., Gerber, R. B. & Krylov, A. I. Calculations predict a stable molecular crystal of N8. Nat. Chem. 6, 52–56 (2014).
Strout, D. L. Cage isomers of N14 and N16: nitrogen molecules that are not a multiple of six. J. Phys. Chem. A 108, 10911–10916 (2004).
Samartzis, P. C. & Wodtke, A. M. All-nitrogen chemistry: how far are we from N60? Int. Rev. Phys. Chem. 25, 527–552 (2010).
Mikhailov, O. V. Molecular and electronic structures of neutral polynitrogens: review on the theory and experiment in 21st century. Int. J. Mol. Sci. 23, 2841 (2022).
Thrush, B. A. & Norrish, R. G. W. The detection of free radicals in the high intensity photolysis of hydrogen azide. Proc. R. Soc. Lond. A 235, 143–147 (1956).
Beaman, R. A., Nelson, T., Richards, D. S. & Setser, D. W. Observation of azido radical by laser-induced fluorescence. J. Phys. Chem. 91, 6090–6092 (1987).
Cacace, F., de Petris, G. & Troiani, A. Experimental detection of tetranitrogen. Science 295, 480–481 (2002).
Hayon, E. & Simic, M. Absorption spectra and kinetics of the intermediate produced from the decay of azide radicals. J. Am. Chem. Soc. 92, 7486–7487 (1970).
Zhou, H., Wong, N.-B., Zhou, G. & Tian, A. Theoretical study on “multilayer” nitrogen cages. J. Phys. Chem. A 110, 3845–3852 (2006).
Sedgi, I. & Kozuch, S. Quantum tunneling instability of the mythical hexazine and pentazine. Chem. Commun. 60, 2038–2041 (2024).
Schreiner, P. R. Quantum mechanical tunneling is essential to understanding chemical reactivity. Trends Chem. 2, 980–989 (2020).
Christe, K. O., Wilson, W. W., Sheehy, J. A. & Boatz, J. A. N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed. 38, 2004–2009 (1999).
Vij, A. et al. Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. J. Am. Chem. Soc. 123, 6308–6313 (2001).
Vij, A., Pavlovich, J. G., Wilson, W. W., Vij, V. & Christe, K. O. Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5−. Angew. Chem. Int. Ed. 41, 3051–3054 (2002).
Östmark, H. et al. Detection of pentazolate anion (cyclo-N5−) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole. Chem. Phys. Lett. 379, 539–546 (2003).
Zhang, C. et al. Synthesis and characterization of the pentazolate anion cyclo-N5ˉ in (N5)6(H3O)3(NH4)4Cl. Science 355, 374–376 (2017).
Xu, Y. et al. A series of energetic metal pentazolate hydrates. Nature 549, 78–81 (2017).
Xu, Y., Tian, L., Li, D., Wang, P. & Lu, M. A series of energetic cyclo-pentazolate salts: rapid synthesis, characterization, and promising performance. J. Mater. Chem. A 7, 12468–12479 (2019).
Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nat. Mater. 3, 558–563 (2004).
Benchafia, E. M. et al. Cubic gauche polymeric nitrogen under ambient conditions. Nat. Commun. 8, 930 (2017).
Laniel, D. et al. Aromatic hexazine [N6]4− anion featured in the complex structure of the high-pressure potassium nitrogen compound K9N56. Nat. Chem. 15, 641–646 (2023).
Greschner, M. J. et al. A new allotrope of nitrogen as high-energy density material. J. Phys. Chem. A 120, 2920–2925 (2016).
Qian, W. Y., Mardyukov, A. & Schreiner, P. R. Hexanitrogen (N6): a synthetic leap towards neutral nitrogen allotropes. Preprint at https://doi.org/10.26434/chemrxiv-2024-90vvx (2024).
Zeng, X. et al. Reaction of AgN3 with SOCl2: evidence for the formation of thionyl azide, SO(N3)2. Inorg. Chem. 43, 4799–4801 (2004).
Raschig, F. Über Chlorazid N3Cl. Ber. Dtsch. Chem. Ges. 41, 4194–4195 (1908).
Lyhs, B., Bläser, D., Wölper, C., Schulz, S. & Jansen, G. A comparison of the solid-state structures of halogen azides XN3 (X=Cl, Br, I). Angew. Chem. Int. Ed. 51, 12859–12863 (2012).
Buzek, P., Klapötke, T. M., von Ragué Schleyer, P., Tornieporth‐Oetting, I. C. & White, P. S. Iodine azide. Angew. Chem. Int. Ed. 32, 275–277 (1993).
Shurvell, H. F. & Hyslop, D. W. Infrared spectrum of cyanogen azide. J. Chem. Phys. 52, 881–887 (1970).
Pimental, G. C. & Charles, S. W. Infrared spectral perturbations in matrix experiments. Pure Appl. Chem. 7, 111–124 (1963).
Zeng, X., Beckers, H. & Willner, H. Matrix isolation of two isomers of N4CO. Angew. Chem. Int. Ed. Engl. 50, 482–485 (2011).
Tobita, M. & Bartlett, R. J. Structure and stability of N6 isomers and their spectroscopic characteristics. J. Phys. Chem. A 105, 4107–4113 (2001).
Gagliardi, L., Evangelisti, S., Barone, V. & Roos, B. O. On the dissociation of N6 into 3 N2 molecules. Chem. Phys. Lett. 320, 518–522 (2000).
Huber, K. P. & Herzberg, G. in Molecular Spectra and Molecular Structure (eds Huber, K. P. & Herzberg, G.) Ch. 2, 8–689 (Springer, 1979).
Carlotti, M., Johns, J. W. C. & Trombetti, A. The ν5 fundamental bands of N2H2 and N2D2. Can. J. Phys. 52, 340–344 (1974).
Brazier, C. R., Bernath, P. F., Burkholder, J. B. & Howard, C. J. Fourier transform spectroscopy of the ν3 band of the N3 radical. J. Chem. Phys. 89, 1762–1767 (1988).
Bittererová, M., Östmark, H. & Brinck, T. Ab initio study of the ground state and the first excited state of the rectangular (D2h)N4 molecule. Chem. Phys. Lett. 347, 220–228 (2001).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Schreiner, P. R. Tunneling control of chemical reactions: the third reactivity paradigm. J. Am. Chem. Soc. 139, 15276–15283 (2017).
Weggel, D. C. in Blast Protection of Civil Infrastructures and Vehicles Using Composites (ed. Uddin, N.) 3–43 (Woodhead Publishing, 2010).
Pople, J. A., Head‐Gordon, M. & Raghavachari, K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys. 87, 5968–5975 (1987).
Bartlett, R. J. & Purvis, G. D. Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int. J. Mol. Sci. 14, 561–581 (1978).
Pople, J. A., Krishnan, R., Schlegel, H. B. & Binkley, J. S. Electron correlation theories and their application to the study of simple reaction potential surfaces. Int. J. Mol. Sci. 14, 545–560 (1978).
Neese, F. Software update: the ORCA program system—version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).
Frisch, M. J. et al. Gaussian 16, Revision B.01 (Gaussian, Inc., 2016).
Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
Stanton, J. F. et al. CFOUR, coupled-cluster techniques for computational chemistry, a quantum-chemical program package with the integral packages MOLECULE (J. Almlöf and PR Taylor), PROPS (PR Taylor) (2014).
Lu, T. & Chen, F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 38, 314–323 (2012).
Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 40, 2234–2241 (2019).
Glendening, E. D., Landis, C. R. & Weinhold, F. Natural bond orbital methods. WIREs Comput. Mol. Sci. 2, 1–42 (2012).
Zheng, J. et al. Gaussrate 17-B (Univ. Minnesota, 2017).
Garrett, B. C. & Truhlar, D. G. Generalized transition state theory. Bond energy-bond order method for canonical variational calculations with application to hydrogen atom transfer reactions. J. Am. Chem. Soc. 101, 4534–4548 (1979).
Garrett, B. C. & Truhlar, D. G. Criterion of minimum state density in the transition state theory of bimolecular reactions. J. Chem. Phys. 70, 1593–1598 (1979).
Garrett, B. C., Truhlar, D. G., Grev, R. S. & Magnuson, A. W. Improved treatment of threshold contributions in variational transition-state theory. J. Phys. Chem. 84, 1730–1748 (1980).
Truhlar, D. G., Issacson, A., Skodje, R. & Garrett, B. C. Additions and corrections – incorporation of quantum effects in generalized-transition-state theory. J. Phys. Chem. 87, 4554–4554 (1983).
Zheng, J. et al. Polyrate-version 2017-C (Univ. Minnesota, 2017).
Tao, Y., Zou, W., Nanayakkara, S. & Kraka, E. LModeA-nano: a PyMOL plugin for calculating bond strength in solids, surfaces, and molecules via local vibrational mode analysis. J. Chem. Theory Comput. 18, 1821–1837 (2022).
Politzer, P., Martinez, J., Murray, J. S., Concha, M. C. & Toro-Labbé, A. An electrostatic interaction correction for improved crystal density prediction. Mol. Phys. 107, 2095–2101 (2009).
Bader, R. F. W., Carroll, M. T., Cheeseman, J. R. & Chang, C. Properties of atoms in molecules: atomic volumes. J. Am. Chem. Soc. 109, 7968–7979 (1987).
Murray, J. S., Concha, M. C. & Politzer, P. Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol. Phys. 107, 89–97 (2009).
Kamlet, M. J. & Jacobs, S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys. 48, 23–35 (1968).
Prazyan, T. L. & Zhuravlev, Y. N. Computer simulation of the structure and electronic and detonation properties of energy materials. Combust. Explos. Shock Waves 53, 718–723 (2017).