Friday, January 9, 2026
No menu items!
HomeNaturePrefrontal neural geometry of learned cues guides motivated behaviours

Prefrontal neural geometry of learned cues guides motivated behaviours

  • Pearce, J. M. & Bouton, M. E. Theories of associative learning in animals. Annu. Rev. Psychol. 52, 111–139 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Rolls, E. T. What are emotional states, and why do we have them? Emot. Rev. 5, 241–247 (2013).

    Article 

    Google Scholar
     

  • O’Doherty, J. P. The problem with value. Neurosci. Biobehav. Rev. 43, 259–268 (2014).

  • Tye, K. M. Neural circuit motifs in valence processing. Neuron 100, 436–452 (2018).

  • Kahnt, T., Park, S. Q., Haynes, J. D. & Tobler, P. N. Disentangling neural representations of value and salience in the human brain. Proc. Natl Acad. Sci. USA 111, 5000–5005 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008).

  • Rolls, E. T. Emotion Explained (Oxford Academic, 2009).

  • Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrison, S. E. & Salzman, C. D. Re-valuing the amygdala. Curr. Opin. Neurobiol. 20, 221–230 (2010).

  • Rudebeck, P. H. & Murray, E. A. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron 84, 1143–1156 (2014).

  • Hinz, J. et al. Stimulus-specific and adaptive value representations in the basolateral amygdala in male mice. Nat. Commun. 16, 5239 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahnt, T. & Tobler, P. N. in Decision Neuroscience: An Integrative Perspective (eds Dreher, J.-C. & Tremblay, L.) Ch. 9 (Elsevier, 2017).

  • Dalley, J. W., Cardinal, R. N. & Robbins, T. W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771–784 (2004).

  • Sotres-Bayon, F. & Quirk, G. J. Prefrontal control of fear: more than just extinction. Curr. Opin. Neurobiol. 20, 231–235 (2010).

  • Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moorman, D. E. & Aston-Jones, G. Prefrontal neurons encode context-based response execution and inhibition in reward seeking and extinction. Proc. Natl Acad. Sci. USA 112, 9472–9477 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, C. K. et al. Molecular and circuit-dynamical identification of top-down neural mechanisms for restraint of reward seeking. Cell 170, 1013–1027 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otis, J. M. et al. Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543, 103–107 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corcoran, K. A. & Quirk, G. J. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J. Neurosci. 27, 840–844 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Courtin, J. et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505, 92–96 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bravo-Rivera, C., Roman-Ortiz, C., Brignoni-Perez, E., Sotres-Bayon, F. & Quirk, G. J. Neural structures mediating expression and extinction of platform-mediated avoidance. J. Neurosci. 34, 9736–9742 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jercog, D. et al. Dynamical prefrontal population coding during defensive behaviours. Nature 595, 690–694 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hok, V., Save, E., Lenck-Santini, P. P. & Poucet, B. Coding for spatial goals in the prelimbic/infralimbic area of the rat frontal cortex. Proc. Natl Acad. Sci. USA 102, 4602–4607 (2005).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campus, P. et al. The paraventricular thalamus is a critical mediator of top-down control of cue-motivated behavior in rats. eLife 8, e49041 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, E. A. et al. A corticothalamic circuit trades off speed for safety during decision-making under motivational conflict. J. Neurosci. 42, 3473–3483 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kietzman, H. W., Trinoskey-Rice, G., Blumenthal, S. A., Guo, J. D. & Gourley, S. L. Social incentivization of instrumental choice in mice requires amygdala-prelimbic cortex-nucleus accumbens connectivity. Nat. Commun. 13, 4768 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgos-Robles, A. et al. Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat. Neurosci. 20, 824–835 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caracheo, B. F., Grewal, J. J. S. & Seamans, J. K. Persistent valence representations by ensembles of anterior cingulate cortex neurons. Front. Syst. Neurosci. 12, 51 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vander Weele, C. M. et al. Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. Nature 563, 397–401 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kyriazi, P., Headley, D. B. & Paré, D. Different multidimensional representations across the amygdalo-prefrontal network during an approach-avoidance task. Neuron 107, 717–730 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. C., Zucca, A., Levy, J. & Page, D. T. Social behavior is modulated by valence-encoding mPFC-amygdala sub-circuitry. Cell Rep. 32, 107899 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. H. et al. Optogenetic stimulation in the medial prefrontal cortex modulates stimulus valence from rewarding and aversive to neutral states. Front. Psychiatry 14, 1119803 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, W. E. et al. Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science 364, eaav3932 (2019).

    Article 

    Google Scholar
     

  • Wang, P. Y. et al. Transient and persistent representations of odor value in prefrontal cortex. Neuron 108, 209–224 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo, M. & Matsuzaki, M. Neuronal representations of reward-predicting cues and outcome history with movement in the frontal cortex. Cell Rep. 34, 108704 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ottenheimer, D. J., Hjort, M. M., Bowen, A. J., Steinmetz, N. A. & Stuber, G. D. A stable, distributed code for cue value in mouse cortex during reward learning. eLife 12, RP84604 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Litt, A., Plassmann, H., Shiv, B. & Rangel, A. Dissociating valuation and saliency signals during decision-making. Cereb. Cortex 21, 95–102 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Distributed neural representation of saliency controlled value and category during anticipation of rewards and punishments. Nat. Commun. 8, 1907 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rolls, E. T. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct. Funct. 228, 1201–1257 (2023).

  • Stephenson-Jones, M. et al. A basal ganglia circuit for evaluating action outcomes. Nature 539, 289–293 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephenson-Jones, M. et al. Opposing contributions of GABAergic and glutamatergic ventral pallidal neurons to motivational behaviors. Neuron 105, 921–933 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallis, J. D. Decoding cognitive processes from neural ensembles. Trends Cogn. Sci. 22, 1091–1102 (2018).

  • Quirk, G. J. & Mueller, D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56–72 (2008).

  • Grewe, B. F. et al. Neural ensemble dynamics underlying a long-term associative memory. Nature 543, 670–675 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002).

    Article 

    Google Scholar
     

  • Bissonette, G. B. et al. Separate populations of neurons in ventral striatum encode value and motivation. PLoS ONE 8, e64673 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyeler, A. et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 90, 348–361 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. & Li, B. Population coding of valence in the basolateral amygdala. Nat. Commun. 9, 5195 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutas, A. et al. State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala. Nat. Neurosci. 22, 1820–1833 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roelofs, K. & Dayan, P. Freezing revisited: coordinated autonomic and central optimization of threat coping. Nat. Rev. Neurosci. 23, 568–580 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Szeska, C., Richter, J., Wendt, J., Weymar, M. & Hamm, A. O. Attentive immobility in the face of inevitable distal threat—startle potentiation and fear bradycardia as an index of emotion and attention. Psychophysiology 58, e13812 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • van Heukelum, S. et al. Where is cingulate cortex? A cross-species view. Trends Neurosci. 43, 285–299 (2020).

  • Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernardi, S. et al. The geometry of abstraction in the hippocampus and prefrontal cortex. Cell 183, 954–967 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flesch, T., Juechems, K., Dumbalska, T., Saxe, A. & Summerfield, C. Orthogonal representations for robust context-dependent task performance in brains and neural networks. Neuron 110, 4212–4219 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortunato, C. et al. Nonlinear manifolds underlie neural population activity during behaviour. Preprint at bioRxiv https://doi.org/10.1101/2023.07.18.549575 (2024).

  • Rozeske, R. R. et al. Prefrontal neuronal circuits of contextual fear conditioning. Genes Brain Behav. 14, 22–36 (2015).

  • Del Arco, A., Park, J. & Moghaddam, B. Unanticipated stressful and rewarding experiences engage the same prefrontal cortex and ventral tegmental area neuronal populations. eNeuro https://doi.org/10.1523/ENEURO.0029-20.2020 (2020).

  • Rozeske, R. R., Valerio, S., Chaudun, F. & Herry, C. Prefrontal neuronal circuits of contextual fear conditioning. Genes Brain Behav. 14, 22–36 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Beyeler, A. et al. Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. Cell Rep. 22, 905–918 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Genetically identified amygdala–striatal circuits for valence-specific behaviors. Nat. Neurosci. 24, 1586–1600 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kyriazi, P., Headley, D. B. & Pare, D. Multi-dimensional coding by basolateral amygdala article multi-dimensional coding by basolateral amygdala neurons. Neuron 99, 1315–1328 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, P.-K. et al. The representational geometry of emotional states in basolateral amygdala. Preprint at bioRxiv https://doi.org/10.1101/2023.09.23.558668 (2023).

  • Headley, D. B., Kanta, V., Kyriazi, P. & Paré, D. Embracing complexity in defensive networks. Neuron 103, 189–201 (2019).

  • Ehret, B. et al. Population-level coding of avoidance learning in medial prefrontal cortex. Nat. Neurosci. 27, 1805–1815 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyman, J. M., Whitman, J., Emberly, E., Woodward, T. S. & Seamans, J. K. Action and outcome activity state patterns in the anterior cingulate cortex. Cereb. Cortex 23, 1257–1268 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Li, N., Daie, K., Svoboda, K. & Druckmann, S. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532, 459–464 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flavell, S. W., Gogolla, N., Lovett-Barron, M. & Zelikowsky, M. The emergence and influence of internal states. Neuron 110, 2545–2570 (2022).

  • Grillon, C. Associative learning deficits increase symptoms of anxiety in humans. Biol. Psychiatry 51, 851–858 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Jo, Y. S., Heymann, G. & Zweifel, L. S. Dopamine neurons reflect the uncertainty in fear generalization. Neuron 100, 916–925 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Griffiths, K. R., Morris, R. W. & Balleine, B. W. Translational studies of goal-directed action as a framework for classifying deficits across psychiatric disorders. Front. Syst. Neurosci. 8, 101 (2014).

  • Bienvenu, T. C. M. et al. The advent of fear conditioning as an animal model of post-traumatic stress disorder: learning from the past to shape the future of PTSD research. Neuron 109, 2380–2397 (2021).

  • Sookman, D. & Pinard, G. in Cognitive Approaches to Obsessions and Compulsions (eds Frost, R. O. & Steketee, G.) Ch. 5 (Elsevier, 2002).

  • Peschard, V. & Philippot, P. Overestimation of threat from neutral faces and voices in social anxiety. J. Behav. Ther. Exp. Psychiatry 57, 206–211 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).

  • Blair, K. S. et al. Reduced optimism and a heightened neural response to everyday worries are specific to generalized anxiety disorder, and not seen in social anxiety. Psychol. Med. 47, 1806–1815 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Likhtik, E., Stujenske, J. M., Topiwala, M. A., Harris, A. Z. & Gordon, J. A. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 17, 106–113 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Felix-Ortiz, A. C. et al. The infralimbic and prelimbic cortical areas bidirectionally regulate safety learning during normal and stress conditions. Preprint at bioRxiv https://doi.org/10.1101/2023.05.05.539516 (2023).

  • Deserno, L., Boehme, R., Heinz, A. & Schlagenhauf, F. Reinforcement learning and dopamine in schizophrenia: dimensions of symptoms or specific features of a disease group? Front. Psychiatry 4, 172 (2013).

  • Jia, R. et al. Neural valuation of rewards and punishments in posttraumatic stress disorder: a computational approach. Transl. Psychiatry 13, 101 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates 2nd edn (Elsevier, 2001).

  • Capuzzo, G. & Floresco, S. B. Prelimbic and infralimbic prefrontal regulation of active and inhibitory avoidance and reward-seeking. J. Neurosci. 40, 4773–4787 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hastie, T. Ridge regularization: an essential concept in data science. Technometrics 62, 426–433 (2020).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn, corrected 12th printing Jan 2017 (Springer, 2009).

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Proc. Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) (NIPS, 2017).

  • RELATED ARTICLES

    Most Popular

    Recent Comments