Zhang, B. The physics of fast radio bursts. Rev. Mod. Phys. 95, 035005 (2023).
CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54â58 (2020).
Bochenek, C. D. et al. A fast radio burst associated with a Galactic magnetar. Nature 587, 59â62 (2020).
Gordon, A. C. et al. The demographics, stellar populations, and star formation histories of fast radio burst host galaxies: implications for the progenitors. Astrophys. J. 954, 80 (2023).
Bhardwaj, M. et al. Host galaxies for four nearby CHIME/FRB sources and the local universe FRB host galaxy population. Astrophys. J. Lett. 971, L51 (2024).
Popov, S. B. in Neutron Star Astrophysics at the Crossroads: Magnetars and the Multimessenger Revolution Vol. 363 (eds Troja, E. & Baring, M. G.) 61â71 (Cambridge Univ. Press, 2023).
Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261â301 (2017).
Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M. & Tremonti, C. A. The ages and metallicities of galaxies in the local universe. Mon. Not. R. Astron. Soc. 362, 41â58 (2005).
Zapartas, E. et al. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction. Astron. Astrophys. 601, A29 (2017).
Zapartas, E. et al. The diverse lives of progenitors of hydrogen-rich core-collapse supernovae: the role of binary interaction. Astron. Astrophys. 631, A5 (2019).
Frost, A. J. et al. A magnetic massive star has experienced a stellar merger. Science 384, 214â217 (2024).
Schneider, F. R. N. et al. Stellar mergers as the origin of magnetic massive stars. Nature 574, 211â214 (2019).
Weinreb, S. & Shi, J. Low noise amplifier with 7-K noise at 1.4 GHz and 25 °C. IEEE Trans. Microw. Theory Tech. 69, 2345â2351 (2021).
Connor, L. et al. A gas rich cosmic web revealed by partitioning the missing baryons. Preprint at https://arxiv.org/abs/2409.16952 (2024).
Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).
Zou, H. et al. Project overview of the BeijingâArizona Sky Survey. Publ. Astron. Soc. Pac. 129, 064101 (2017).
Nikzad, S. et al. High-efficiency UV/optical/NIR detectors for large aperture telescopes and UV explorer missions: development of and field observations with delta-doped arrays. J. Astron. Telesc. Instrum. Syst. 3, 036002 (2017).
Wilson, J. C. et al. A wide-field infrared camera for the Palomar 200-inch telescope. Proc. SPIE 4841, 451â458 (2003).
Aggarwal, K. et al. Probabilistic Association of Transients to their Hosts (PATH). Astrophys. J. 911, 95 (2021).
Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).
Faber, S. M. et al. The DEIMOS spectrograph for the Keck II Telescope: integration and testing. Proc. SPIE 4841, 1657â1669 (2003).
Oke, J. B. & Gunn, J. E. An efficient low resolution and moderate resolution spectrograph for the Hale telescope. Publ. Astron. Soc. Pac. 94, 586 (1982).
Cappellari, M. Full spectrum fitting with photometry in PPXF: stellar population versus dynamical masses, non-parametric star formation history and metallicity for 3200 LEGA-C galaxies at redshift z â 0.8. Mon. Not. R. Astron. Soc. 526, 3273â3300 (2023).
Johnson, B. D., Leja, J., Conroy, C. & Speagle, J. S. Stellar population Inference with Prospector. Astrophys. J. Suppl. Ser. 254, 22 (2021).
Dey, A. et al. Overview of the DESI Legacy Imaging Surveys. Astron. J. 157, 168 (2019).
Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astrophys. J. Suppl. Ser. 219, 12 (2015).
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163â1183 (2006).
Cutri, R. M. et al. VizieR Online Data Catalog: AllWISE Data Release (Cutri+ 2013). VizieR Online Data Catalog II/328 (2021).
Martin, D. C. et al. The Galaxy Evolution Explorer: a space ultraviolet survey mission. Astrophys. J. Lett. 619, L1âL6 (2005).
Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5â19 (1981).
Kewley, L. J., Groves, B., Kauffmann, G. & Heckman, T. The host galaxies and classification of active galactic nuclei. Mon. Not. R. Astron. Soc. 372, 961â976 (2006).
Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868â1881 (2010).
Leja, J. et al. A new census of the 0.2 < z < 3.0 universe. I. The stellar mass function. Astrophys. J. 893, 111 (2020).
Leja, J. et al. A new census of the 0.2 < z < 3.0 universe. II. The star-forming sequence. Astrophys. J. 936, 165 (2022).
Law, C. J. et al. Deep Synoptic Array science: first FRB and host galaxy catalog. Astrophys. J. 967, 29 (2024).
Ocker, S. K., Cordes, J. M., Chatterjee, S. & Gorsuch, M. R. Radio scattering horizons for galactic and extragalactic transients. Astrophys. J. 934, 71 (2022).
Schulze, S. et al. The Palomar Transient Factory core-collapse supernova host-galaxy sample. I. Host-galaxy distribution functions and environment dependence of core-collapse supernovae. Astrophys. J. Suppl. Ser. 255, 29 (2021).
James, C. W. et al. The fast radio burst population evolves, consistent with the star formation rate. Mon. Not. R. Astron. Soc. 510, L18âL23 (2022).
Taggart, K. & Perley, D. A. Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies. Mon. Not. R. Astron. Soc. 503, 3931â3952 (2021).
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How massive single stars end their life. Astrophys. J. 591, 288â300 (2003).
Klencki, J., Nelemans, G., Istrate, A. G. & Pols, O. Massive donors in interacting binaries: effect of metallicity. Astron. Astrophys. 638, A55 (2020).
Sherman, M. B. et al. Searching for magnetar binaries disrupted by core-collapse supernovae. Mon. Not. R. Astron. Soc. 531, 2379â2414 (2024).
Seebeck, J. et al. The effects of selection biases on the analysis of localised fast radio bursts. Preprint at https://arxiv.org/abs/2112.07639 (2021).
Bhardwaj, M. et al. A nearby repeating fast radio burst in the direction of M81. Astrophys. J. Lett. 910, L18 (2021).
Kremer, K., Piro, A. L. & Li, D. Dynamical formation channels for fast radio bursts in globular clusters. Astrophys. J. Lett. 917, L11 (2021).
Sharma, K. et al. Deep Synoptic Array science: a massive elliptical host among two galaxy-cluster fast radio bursts. Astrophys. J. 950, 175 (2023).
Tauris, T. M., Sanyal, D., Yoon, S. C. & Langer, N. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars. Astron. Astrophys. 558, A39 (2013).
Ma, X. et al. The origin and evolution of the galaxy massâmetallicity relation. Mon. Not. R. Astron. Soc. 456, 2140â2156 (2016).
Margalit, B. & Metzger, B. D. A concordance picture of FRB 121102 as a flaring magnetar embedded in a magnetized ionâelectron wind nebula. Astrophys. J. Lett. 868, L4 (2018).
Ravi, V. et al. Deep Synoptic Array science: discovery of the host galaxy of FRB 20220912A. Astrophys. J. Lett. 949, L3 (2023).
Barsdell, B. R., Bailes, M., Barnes, D. G. & Fluke, C. J. Accelerating incoherent dedispersion. Mon. Not. R. Astron. Soc. 422, 379â392 (2012).
CASA Team. CASA, the Common Astronomy Software Applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).
Offringa, A. R. et al. WSClean: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606â619 (2014).
Condon, J. J. et al. The NRAO VLA Sky Survey. Astron. J. 115, 1693â1716 (1998).
Hewitt, D. M. et al. Milliarcsecond localization of the hyperactive repeating FRB 20220912A. Mon. Not. R. Astron. Soc. 529, 1814â1826 (2024).
Zhang, Z. J., Yan, K., Li, C. M., Zhang, G. Q. & Wang, F. Y. Intergalactic medium dispersion measures of fast radio bursts estimated from IllustrisTNG simulation and their cosmological applications. Astrophys. J. 906, 49 (2021).
Abbott, T. M. C. et al. The Dark Energy Survey: Data Release 1. Astrophys. J. Suppl. Ser. 239, 18 (2018).
Ochsenbein, F., Bauer, P. & Marcout, J. The VizieR database of astronomical catalogues. Astron. Astrophys. Suppl. 143, 23â32 (2000).
Astropy Collaboration. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).
Astropy Collaboration. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
Tachibana, Y. & Miller, A. A. A morphological classification model to identify unresolved PanSTARRS1 sources: application in the ZTF real-time pipeline. Publ. Astron. Soc. Pac. 130, 128001 (2018).
OMullane, W. et al. Batch is back: CasJobs, serving multi-TB data on the Web. Preprint at https://arxiv.org/abs/cs/0502072 (2005).
Schlegel, D. et al. DESI Legacy Imaging Surveys Data Release 9. Am. Astron. Soc. Meet. Abstr. 237, 235-03 (2021).
Lang, D., Hogg, D. W., Mierle, K., Blanton, M. & Roweis, S. Astrometry.net: blind astrometric calibration of arbitrary astronomical images. Astron. J. 139, 1782â1800 (2010).
Bertin, E. in Proc. Astronomical Data Analysis Software and Systems XX (eds Evans, I. N., Accomazzi, A., Mink, D. J. & Rots, A. H.) 435 (Astronomical Society of the Pacific, 2011).
Flewelling, H. Pan-STARRS Data Release 2. Am. Astron. Soc. Meet. Abstr. 231, 436.01 (2018).
Bradley, L. et al. astropy/photutils: 1.5.0. Zenodo https://doi.org/10.5281/zenodo.6825092 (2022).
Eftekhari, T. & Berger, E. Associating fast radio bursts with their host galaxies. Astrophys. J. 849, 162 (2017).
van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size-mass distribution since z = 3. Astrophys. J. 788, 28 (2014).
Driver, S. P. et al. Measurements of extragalactic background light from the far UV to the far IR from deep ground- and space-based galaxy counts. Astrophys. J. 827, 108 (2016).
Peebles, P. J. E. The Large-Scale Structure of the Universe (Princeton Univ. Press, 1980).
McCully, C. et al. astropy/astroscrappy: v1.0.5 Zenodo release. Zenodo https://doi.org/10.5281/zenodo.1482019 (2018).
Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Bertin, E. et al. in Proc. Astronomical Data Analysis Software and Systems XI (eds Bohlender, D. A., Durand, D. & Handley, T. H.) 228 (Astronomical Society of the Pacific, 2002).
Green, G. dustmaps: a Python interface for maps of interstellar dust. J. Open Source Softw. 3, 695 (2018).
Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac. 111, 63â75 (1999).
Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).
Prochaska, J. X. et al. pypeit/PypeIt: version 1.6.0. Zenodo https://doi.org/10.5281/zenodo.5548381 (2021).
Prochaska, J. X. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).
Mandigo-Stoba, M. S., Fremling, C. & Kasliwal, M. M. DBSP_DRP: a Python package for automated spectroscopic data reduction of dbsp data. J. Open Source Softw. 7, 3612 (2022).
Cappellari, M. Improving the full spectrum fitting method: accurate convolution with GaussâHermite functions. Mon. Not. R. Astron. Soc. 466, 798â811 (2017).
Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703â718 (2006).
Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486â506 (2009).
Conroy, C. & Gunn, J. E. FSPS: Flexible Stellar Population Synthesis. Astrophysics Source Code Library, record ascl:1010.043 (2010).
Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132â3158 (2020).
Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231â246 (2001).
Kriek, M. & Conroy, C. The dust attenuation law in distant galaxies: evidence for variation with spectral type. Astrophys. J. Lett. 775, L16 (2013).
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682â695 (2000).
Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. Astrophys. J. 657, 810â837 (2007).
Nenkova, M., Sirocky, M. M., Nikutta, R., IveziÄ, Ž. & Elitzur, M. AGN dusty tori. II. Observational implications of clumpiness. Astrophys. J. 685, 160â180 (2008).
Leja, J., Johnson, B. D., Conroy, C. & van Dokkum, P. Hot dust in panchromatic SED fitting: identification of active galactic nuclei and improved galaxy properties. Astrophys. J. 854, 62 (2018).
Laigle, C. et al. The COSMOS2015 catalog: exploring the 1 < z < 6 Universe with half a million galaxies. Astrophys. J. Suppl. Ser. 224, 24 (2016).
Skelton, R. E. et al. 3D-HST WFC3-selected photometric catalogs in the five CANDELS/3D-HST fields: photometry, photometric redshifts, and stellar masses. Astrophys. J. Suppl. Ser. 214, 24 (2014).
Leja, J. et al. An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Astrophys. J. 877, 140 (2019).
Bhandari, S. et al. Characterizing the fast radio burst host galaxy population and its connection to transients in the local and extragalactic universe. Astron. J. 163, 69 (2022).
Bhandari, S. et al. The host galaxies and progenitors of fast radio bursts localized with the Australian Square Kilometre Array Pathfinder. Astrophys. J. Lett. 895, L37 (2020).
Heintz, K. E. et al. Host galaxy properties and offset distributions of fast radio bursts: implications for their progenitors. Astrophys. J. 903, 152 (2020).
Macquart, J.-P. et al. The Commensal Real-Time ASKAP Fast-Transients (CRAFT) Survey. Publ. Astron. Soc. Pac. 27, 272â282 (2010).
McConnell, D. et al. The Australian Square Kilometre Array Pathfinder: performance of the Boolardy Engineering Test Array. Publ. Astron. Soc. Pac. 33, e042 (2016).
Rajwade, K. M. et al. First discoveries and localizations of Fast Radio Bursts with MeerTRAP: real-time, commensal MeerKAT survey. Mon. Not. R. Astron. Soc. 514, 1961â1974 (2022).
Jonas, J. & MeerKAT Team. in Proc. MeerKAT Science: On the Pathway to the SKA, 1 (2016).
CHIME/FRB Collaboration. CHIME/FRB discovery of eight new repeating fast radio burst sources. Astrophys. J. Lett. 885, L24 (2019).
Spitler, L. G. et al. Fast radio burst discovered in the Arecibo pulsar ALFA survey. Astrophys. J. 790, 101 (2014).
Scholz, P. et al. The repeating fast radio burst FRB 121102: multi-wavelength observations and additional bursts. Astrophys. J. 833, 177 (2016).
Price, D. C. et al. A fast radio burst with frequency-dependent polarization detected during Breakthrough Listen observations. Mon. Not. R. Astron. Soc. 486, 3636â3646 (2019).
Mannings, A. G. et al. A high-resolution view of fast radio burst host environments. Astrophys. J. 917, 75 (2021).
Woodland, M. N. et al. The environments of fast radio bursts viewed using adaptive optics. Astrophys. J. 973, 64 (2024).
Kennicutt, J.Jr & Robert, C. et al. An Hα imaging survey of galaxies in the local 11 Mpc volume. Astrophys. J. Suppl. Ser. 178, 247â279 (2008).
Bhandari, S. et al. A nonrepeating fast radio burst in a dwarf host galaxy. Astrophys. J. 948, 67 (2023).
Niu, C. H. et al. A repeating fast radio burst associated with a persistent radio source. Nature 606, 873â877 (2022).
Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. Lett. 834, L7 (2017).
Kelly, P. L. & Kirshner, R. P. Core-collapse supernovae and host galaxy stellar populations. Astrophys. J. 759, 107 (2012).
Lunnan, R. et al. Zooming in on the progenitors of superluminous supernovae with the HST. Astrophys. J. 804, 90 (2015).
Vergani, S. D. et al. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of LGRBs. I. Stellar mass at z < 1. Astron. Astrophys. 581, A102 (2015).
Blanchard, P. K., Berger, E. & Fong, W.-f The offset and host light distributions of long gamma-ray bursts: a new view from HST observations of Swift bursts. Astrophys. J. 817, 144 (2016).
Childress, M. et al. Host galaxy properties and Hubble residuals of Type Ia supernovae from the Nearby Supernova Factory. Astrophys. J. 770, 108 (2013).
Uddin, S. A. et al. The Carnegie Supernova Project-I: correlation between Type Ia supernovae and their host galaxies from optical to near-infrared bands. Astrophys. J. 901, 143 (2020).
Nugent, A. E. et al. Short GRB host galaxies. II. A legacy sample of redshifts, stellar population properties, and implications for their neutron star merger origins. Astrophys. J. 940, 57 (2022).
Fong, W.-f et al. Short GRB host galaxies. I. Photometric and spectroscopic catalogs, host associations, and galactocentric offsets. Astrophys. J. 940, 56 (2022).
Kovlakas, K. et al. A census of ultraluminous X-ray sources in the local Universe. Mon. Not. R. Astron. Soc. 498, 4790â4810 (2020).
Bochenek, C. D., Ravi, V. & Dong, D. Localized fast radio bursts are consistent with magnetar progenitors formed in core-collapse supernovae. Astrophys. J. Lett. 907, L31 (2021).
Speagle, J. S., Steinhardt, C. L., Capak, P. L. & Silverman, J. D. A highly consistent framework for the evolution of the star-forming âmain sequenceâ from z ~ 0â6. Astrophys. J. Suppl. Ser. 214, 15 (2014).
Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A. & Trevena, J. Theoretical modeling of starburst galaxies. Astrophys. J. 556, 121â140 (2001).
Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055â1077 (2003).
Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257â312 (2020).
Walters, D., Woo, J. & Ellison, S. L. Quenching time-scales in the IllustrisTNG simulation. Mon. Not. R. Astron. Soc. 511, 6126â6142 (2022).
Eftekhari, T. et al. An X-ray census of fast radio burst host galaxies: constraints on active galactic nuclei and X-ray counterparts. Astrophys. J. 958, 66 (2023).
Tacchella, S. et al. Fast, slow, early, late: quenching massive galaxies at z ~ 0.8. Astrophys. J. 926, 134 (2022).
Beloborodov, A. M. Blast waves from magnetar flares and fast radio bursts. Astrophys. J. 896, 142 (2020).
Margalit, B., Berger, E. & Metzger, B. D. Fast radio bursts from magnetars born in binary neutron star mergers and accretion induced collapse. Astrophys. J. 886, 110 (2019).
Nicholl, M. et al. Empirical constraints on the origin of fast radio bursts: volumetric rates and host galaxy demographics as a test of millisecond magnetar connection. Astrophys. J. 843, 84 (2017).
Drlica-Wagner, A. et al. Milky Way satellite census. I. The observational selection function for Milky Way satellites in DES Y3 and Pan-STARRS DR1. Astrophys. J. 893, 47 (2020).
Harris, W. E. A catalog of parameters for globular clusters in the Milky Way. Astron. J. 112, 1487 (1996).
Lampeitl, H. et al. The effect of host galaxies on Type Ia supernovae in the SDSS-II supernova survey. Astrophys. J. 722, 566â576 (2010).