Wednesday, January 14, 2026
No menu items!
HomeNaturePredictive coding of reward in the hippocampus

Predictive coding of reward in the hippocampus

  • Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press, 1978).

  • Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Levenstein, D., Efremov, A., Eyono, R. H., Peyrache, A. & Richards, B. Sequential predictive learning is a unifying theory for hippocampal representation and replay. Preprint at bioRxiv https://doi.org/10.1101/2024.04.28.591528 (2024).

  • Sosa, M. & Giocomo, L. M. Navigating for reward. Nat. Rev. Neurosci. 22, 472–487 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, I., Griffin, A. L., Zilli, E. A., Eichenbaum, H. & Hasselmo, M. E. Gradual translocation of spatial correlates of neuronal firing in the hippocampus toward prospective reward locations. Neuron 51, 639–650 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Aoki, Y., Igata, H., Ikegaya, Y. & Sasaki, T. The integration of goal-directed signals onto spatial maps of hippocampal place cells. Cell Rep. 27, 1516–1527 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gauthier, J. L. & Tank, D. W. A dedicated population for reward coding in the hippocampus. Neuron 99, 179–193 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, M. G., Bordelon, B., Zavatone-Veth, J. A. & Pehlevan, C. A model of place field reorganization during reward maximization. Proc. Mach. Learn. Res. 267, 31892–31929 (2025).

  • O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article 
    PubMed 

    Google Scholar
     

  • Deshmukh, S. S. & Knierim, J. J. Influence of local objects on hippocampal representations: landmark vectors and memory. Hippocampus 23, 253–267 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kraus, B. J., Robinson, R. J. 2nd, White, J. A., Eichenbaum, H. & Hasselmo, M. E. Hippocampal ‘time cells’: time versus path integration. Neuron 78, 1090–1101 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature 543, 719–722 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sosa, M., Plitt, M. H. & Giocomo, L. M. A flexible hippocampal population code for experience relative to reward. Nat. Neurosci. 28, 1497–1509 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaufman, A. M., Geiller, T. & Losonczy, A. A role for the locus coeruleus in hippocampal CA1 place cell reorganization during spatial reward learning. Neuron 105, 1018–1026 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupret, D., O’Neill, J., Pleydell-Bouverie, B. & Csicsvari, J. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S.-H. et al. Neural signals related to outcome evaluation are stronger in CA1 than CA3. Front. Neural Circuits 11, 40 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lisman, J. & Redish, A. D. Prediction, sequences and the hippocampus. Philos. Trans. R. Soc. B 364, 1193–1201 (2009).

    Article 

    Google Scholar
     

  • Aharoni, D. & Hoogland, T. M. Circuit investigations with open-source miniaturized microscopes: past, present and future. Front. Cell. Neurosci. 13, 141 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife 7, e28728 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosser, C.-A. et al. The McGill-Mouse-Miniscope platform: a standardized approach for high-throughput imaging of neuronal dynamics during behavior. Genes Brain Behav. 20, e12686 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bussey, T. J. et al. New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62, 1191–1203 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent embeddings for joint behavioural and neural analysis. Nature 617, 360–368 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H., Baracskay, P., O’Neill, J. & Csicsvari, J. Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze. Neuron 101, 119–132.e4 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA 94, 8918–8921 (1997).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berke, J. D. What does dopamine mean?. Nat. Neurosci. 21, 787–793 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glimcher, P. W. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc. Natl Acad. Sci. USA 108, 15647–15654 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watabe-Uchida, M., Eshel, N. & Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40, 373–394 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dayan, P. Improving generalization for temporal difference learning: the successor representation. Neural Comput. 5, 613–624 (1993).

    Article 

    Google Scholar
     

  • Gershman, S. J., Moore, C. D., Todd, M. T., Norman, K. A. & Sederberg, P. B. The successor representation and temporal context. Neural Comput. 24, 1553–1568 (2012).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Maes, E. J. P. et al. Causal evidence supporting the proposal that dopamine transients function as temporal difference prediction errors. Nat. Neurosci. 23, 176–178 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 1998).

  • Amo, R. et al. A gradual temporal shift of dopamine responses mirrors the progression of temporal difference error in machine learning. Nat. Neurosci. 25, 1082–1092 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster, D. J., Morris, R. G. & Dayan, P. A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10, 1–16 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Kumar, M. G., Tan, C., Libedinsky, C., Yen, S.-C. & Tan, A. Y.-Y. One-shot learning of paired association navigation with biologically plausible schemas. Preprint at https://doi.org/10.48550/arXiv.2106.03580 (2021).

  • Fang, C. & Stachenfeld, K. L. Predictive auxiliary objectives in deep RL mimic learning in the brain. In The 12 International Conference on Learning Representations (ICLR, 2024).

  • Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic feedback weights support error backpropagation for deep learning. Nat. Commun. 7, 13276 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miconi, T. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks. eLife 6, e20899 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, J. M. Local online learning in recurrent networks with random feedback. eLife 8, e43299 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nøkland, A. Direct feedback alignment provides learning in deep neural networks. In Proc. 30th International Conference on Neural Information Processing Systems 1045–1053 (NIPS, 2016).

  • Overwiening, J., Kumar, M. G. & Sompolinsky, H. TeDFA-δ: Temporal integration in deep spiking networks trained with feedback alignment improves policy learning. In 8th Annual Conference on Cognitive Computational Neuroscience (CCM, 2025).

  • Heath, C. J., Phillips, B. U., Bussey, T. J. & Saksida, L. M. Measuring motivation and reward-related decision making in the rodent operant touchscreen system. Curr. Protoc. Neurosci. 74, 8.34.1–8.34.20 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, C. H. et al. Trial-unique, delayed nonmatching-to-location (TUNL) touchscreen testing for mice: sensitivity to dorsal hippocampal dysfunction. Psychopharmacology 232, 3935–3945 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of calcium imaging data. PLoS Comput. Biol. 13, e1005423 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lauer, J. et al. Multi-animal pose estimation, identification and tracking with DeepLabCut. Nat. Methods 19, 496–504 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89, 285–299 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheintuch, L. et al. Tracking the same neurons across multiple days in Ca2+ imaging data. Cell Rep. 21, 1102–1115 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. et al. Simultaneous multi-plane imaging of neural circuits. Neuron 89, 269–284 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In International Conference on Machine Learning 1597–1607 (PMLR, 2020).

  • Kraskov, A., Stogbauer, H. & Grassberger, P. Estimating mutual information. Phys. Rev. E 69, 066138 (2004).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ross, B. C. Mutual information between discrete and continuous data sets. PLoS ONE 9, e87357 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markus, E. J., Barnes, C. A., McNaughton, B. L., Gladden, V. L. & Skaggs, W. E. Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. Hippocampus 4, 410–421 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Floresco, S. B., Todd, C. L. & Grace, A. A. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J. Neurosci. 21, 4915–4922 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnstedt, O., Mocellin, P. & Remy, S. A hippocampus-accumbens code guides goal-directed appetitive behavior. Nat. Commun. 15, 3196 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalivas, P. W., Churchill, L. & Klitenick, M. A. GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area. Neuroscience 57, 1047–1060 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Ibrahim, K. M. et al. Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons. Nat. Commun. 15, 750 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kumar, M. G., Tan, C., Libedinsky, C., Yen, S.-C. & Tan, A. Y. Y. A nonlinear hidden layer enables actor-critic agents to learn multiple paired association navigation. Cereb. Cortex 32, 3917–3936 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Krishnan, S., Heer, C., Cherian, C. & Sheffield, M. E. J. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat. Commun. 13, 6662 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bordelon, B. & Pehlevan, C. Self-consistent dynamical field theory of kernel evolution in wide neural networks. J. Stat. Mech. 2023, 114009 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Vyas, N. et al. Feature-learning networks are consistent across widths at realistic scales. Adv. Neural Inf. Process. Syst. 36, 1036–1060 (2023).

  • Paninski, L. & Cunningham, J. P. Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience. Curr. Opin. Neurobiol. 50, 232–241 (2018).

  • Jazayeri, M. & Ostojic, S. Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. Curr. Opin. Neurobiol. 70, 113–120 (2021).

  • Urai, A. E. et al. Large-scale neural recordings call for new insights to link brain and behavior. Nat. Neurosci. 25, 11–19 (2022).

  • Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009)

  • Hollup, S. A. Molden, S, Donnett, J. G., Moser, M. B. & Moser,E. I. Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J. Neurosci. 21, 1635–1644 (2001).

  • RELATED ARTICLES

    Most Popular

    Recent Comments