Nguyen, T. P. et al. Polypeptide organic radical batteries. Nature 593, 61–66 (2021).
Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).
Kim, J. et al. Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54–70 (2023).
Dai, H., Guan, L., Mao, M. & Wang, C. J. Evaluating the present and future of organic batteries. Nat. Rev. Clean Technol. 1, 493–510 (2025).
Li, M. et al. Electrolytes in organic batteries. Chem. Rev. 123, 1712–1773 (2023).
Li, M. & Lu, J. Cobalt in lithium-ion batteries. Science 367, 979–980 (2020).
Deng, T. et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 3, 2550–2564 (2019).
Ogihara, N. et al. Direct capacity regeneration for spent Li-ion batteries. Joule 8, 1364–1379 (2024).
Bai, S. et al. Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021).
Li, M. et al. Soluble organic cathodes enable long cycle life, high rate, and wide-temperature lithium-ion batteries. Adv. Mater. 34, 2107226 (2022).
Chen, Z. et al. A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries. Proc. Natl Acad. Sci. USA 119, e2116775119 (2022).
Schön, T. B., McAllister, B. T., Li, P.-F. & Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016).
Lee, M. et al. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2, 861–868 (2017).
Luo, C. et al. Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv. Mater. 30, 1706498 (2018).
Sang, P., Chen, Q., Wang, D.-Y., Guo, W. & Fu, Y. Organosulfur materials for rechargeable batteries: structure, mechanism, and application. Chem. Rev. 123, 1262–1326 (2023).
Xiong, P. et al. Thiourea-based polyimide/RGO composite cathode: a comprehensive study of storage mechanism with alkali metal ions. Sci. China Mater. 63, 1929–1938 (2020).
Guo, J. et al. Revealing hydrogen bond effect in rechargeable aqueous zinc-organic batteries. Angew. Chem. Int. Ed. 63, e202406465 (2024).
Cong, G., Wang, W., Lai, N.-C., Liang, Z. & Lu, Y.-C. A high-rate and long-life organic-oxygen battery. Nat. Mater. 18, 390–396 (2019).
Chen, Z. et al. Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 8, 2204–2216 (2022).
Wang, J. et al. Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nat. Mater. 20, 665–673 (2021).
Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K. & Nishide, H. Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv. Mater. 21, 1627–1630 (2009).
Li, Z. et al. A small molecular symmetric all-organic lithium-ion battery. Angew. Chem. Int. Ed. 61, e202207221 (2022).
Zhao, C. et al. In situ electropolymerization enables ultrafast long cycle life and high-voltage organic cathodes for lithium batteries. Angew. Chem. Int. Ed. 59, 11992–11998 (2020).
Yu, Z. et al. Redox-active donor-acceptor conjugated microporous polymer for high-voltage and high-rate symmetric all-organic lithium-ion battery. Mater. Today Energy 53, 101995 (2025).
Song, Z. et al. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. 54, 13947–13951 (2015).
Deng, X. et al. Ultrafast charging of two-dimensional polymer cathodes enabled by cross-flow structure design. Nat. Chem. 17, 1546–1555 (2025).
Luo, L. et al. A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries. Sci. China Chem. 64, 72–81 (2021).
Kolek, M. et al. Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions. Energy Environ. Sci. 10, 2334–2341 (2017).
Liang, Y. et al. Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J. Am. Chem. Soc. 137, 4956–4959 (2015).
Peng, C. et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017).
Lu, D. et al. Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627, 101–107 (2024).
Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).
Jin, Z. et al. Iterative synthesis of contorted macromolecular ladders for fast-charging and long-life lithium batteries. J. Am. Chem. Soc. 144, 13973–13980 (2022).
Qin, J. et al. A metal-free battery with pure ionic liquid electrolyte. iScience 15, 16–27 (2019).
Ke, Z. et al. Controlled de-doping and redoping of n-doped poly(benzodifurandione) (n-PBDF). Adv. Funct. Mater. 34, 2400255 (2024).
Li, Z. et al. Electrolyte design enables rechargeable LiFePO4/graphite batteries from −80 °C to 80 °C. Angew. Chem. Int. Ed. 64, e202409409 (2025).
Dong, X., Guo, Z., Guo, Z., Wang, Y. & Xia, Y. Organic batteries operated at −70 °C. Joule 2, 902–913 (2018).
Asl, H. Y. & Manthiram, A. Reining in dissolved transition-metal ions. Science 369, 140–141 (2020).
Feng, X., Ren, D., He, X. & Ouyang, M. Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020).
Liu, D. et al. Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes. Nat. Energy 9, 559–569 (2024).
Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).
Tang, H. et al. Highly conductive alcohol-processable n-type conducting polymer enabled by finely tuned electrostatic interactions for green organic electronics. Angew. Chem. Int. Ed. 64, e202415349 (2025).
Neese, F. Software update: the ORCA program system—version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Wang, B. et al. Diffusion coefficients during regenerated cellulose fibers formation using ionic liquids as solvents: experimental investigation and molecular dynamics simulation. Chem. Eng. J. 488, 151175 (2024).

