Wednesday, February 5, 2025
No menu items!
HomeNaturePolytype switching by super-lubricant van der Waals cavity arrays

Polytype switching by super-lubricant van der Waals cavity arrays

  • International Roadmap for Devices and Systems. IEEE https://doi.org/10.60627/0p45-zj55 (2023).

  • Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gao, Y. et al. Tunnel junctions based on interfacial two dimensional ferroelectrics. Nat. Commun. 15, 4449 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vizner Stern, M., Salleh Atri, S. & Ben Shalom, M. Sliding van der Waals polytypes. Nat. Rev. Phys. https://doi.org/10.1038/s42254-024-00781-6 (2024).

  • Yamada, N. et al. High speed overwritable phase change optical disk material. Jpn. J. Appl. Phys. 26, 61–66 (1987).


    Google Scholar
     

  • Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lebedeva, I. V., Lebedev, A. V., Popov, A. M. & Knizhnik, A. A. Dislocations in stacking and commensurate-incommensurate phase transition in bilayer graphene and hexagonal boron nitride. Phys. Rev. B 93, 235414 (2016).

    ADS 

    Google Scholar
     

  • Kushima, A., Qian, X., Zhao, P., Zhang, S. & Li, J. Ripplocations in van der Waals layers. Nano Lett. 15, 1302–1308 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Popov, A. M., Lebedeva, I. V., Knizhnik, A. A., Lozovik, Y. E. & Potapkin, B. V. Commensurate-incommensurate phase transition in bilayer graphene. Phys. Rev. B 84, 045404 (2011).

    ADS 

    Google Scholar
     

  • Tang, P. & Bauer, G. E. W. Sliding phase transition in ferroelectric van der Waals bilayers. Phys. Rev. Lett. 130, 176801 (2023).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasuda, K. et al. Ultrafast high-endurance memory based on sliding ferroelectrics. Science 385, 53–56 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bian, R. et al. Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science 385, 57–62 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, H. et al. Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 20, 3106–3112 (2020).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Atri, S. S. et al. Spontaneous electric polarization in graphene polytypes. Adv. Phys. Res. 3, 2300095 (2024).

    MATH 

    Google Scholar
     

  • Cao, W. et al. Polarization saturation in multilayered interfacial ferroelectrics. Adv. Mater. 36, 2400750 (2024).

    CAS 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hirano, M. & Shinjo, K. Atomistic locking and friction. Phys. Rev. B 41, 11837–11851 (1990).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Leven, I., Krepel, D., Shemesh, O. & Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 4, 115–120 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Constantinescu, G., Kuc, A. & Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gruverman, A. et al. Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors. Appl. Phys. Lett. 83, 728–730 (2003).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 335, 59–61 (2012).

    ADS 
    MATH 

    Google Scholar
     

  • Tsuji, T., Irihama, H. & Yamanaka, K. Observation of anomalous dislocation behavior in graphite using ultrasonic atomic force microscopy. Jpn. J. Appl. Phys. 41, 832–835 (2002).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Jiang, L. et al. Manipulation of domain-wall solitons in bi- and trilayer graphene. Nat. Nanotechnol. 13, 204–208 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Yang, Y. et al. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 6, eabd3655 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert, S. M. et al. Alternative stacking sequences in hexagonal boron nitride. 2D Mater. 6, 021006 (2019).

    CAS 

    Google Scholar
     

  • Wu, H. et al. Direct visualization and manipulation of stacking orders in few-layer graphene by dynamic atomic force microscopy. J. Phys. Chem. Lett. 12, 7328–7334 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Inbar, A. et al. The quantum twisting microscope. Nature 614, 682–687 (2023).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tang, H. et al. On-chip multi-degree-of-freedom control of two-dimensional materials. Nature 632, 1038–1044 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nery, J. P., Calandra, M. & Mauri, F. Long-range rhombohedral-stacked graphene through shear. Nano Lett. 20, 5017–5023 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosse, J. L., Lee, S., Andersen, A. S., Sutherland, D. S. & Huey, B. D. High speed friction microscopy and nanoscale friction coefficient mapping. Meas. Sci. Technol. 25, 115401 (2014).

    ADS 

    Google Scholar
     

  • Zhang, X., Yu, K., Lang, H., Huang, Y. & Peng, Y. Friction reduction of suspended multilayer h-BN based on electrostrain. Appl. Surf. Sci. 611, 155312 (2023).

    CAS 

    Google Scholar
     

  • Yeo, Y. Polytype switching by super lubricant van der Waals cavity arrays. Zenodo https://doi.org/10.5281/zenodo.14082606 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments