International Roadmap for Devices and Systems. IEEE https://doi.org/10.60627/0p45-zj55 (2023).
Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).
Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).
Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).
Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).
Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).
Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).
Gao, Y. et al. Tunnel junctions based on interfacial two dimensional ferroelectrics. Nat. Commun. 15, 4449 (2024).
Vizner Stern, M., Salleh Atri, S. & Ben Shalom, M. Sliding van der Waals polytypes. Nat. Rev. Phys. https://doi.org/10.1038/s42254-024-00781-6 (2024).
Yamada, N. et al. High speed overwritable phase change optical disk material. Jpn. J. Appl. Phys. 26, 61–66 (1987).
Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).
Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).
Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).
Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).
Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).
Lebedeva, I. V., Lebedev, A. V., Popov, A. M. & Knizhnik, A. A. Dislocations in stacking and commensurate-incommensurate phase transition in bilayer graphene and hexagonal boron nitride. Phys. Rev. B 93, 235414 (2016).
Kushima, A., Qian, X., Zhao, P., Zhang, S. & Li, J. Ripplocations in van der Waals layers. Nano Lett. 15, 1302–1308 (2015).
Popov, A. M., Lebedeva, I. V., Knizhnik, A. A., Lozovik, Y. E. & Potapkin, B. V. Commensurate-incommensurate phase transition in bilayer graphene. Phys. Rev. B 84, 045404 (2011).
Tang, P. & Bauer, G. E. W. Sliding phase transition in ferroelectric van der Waals bilayers. Phys. Rev. Lett. 130, 176801 (2023).
Yasuda, K. et al. Ultrafast high-endurance memory based on sliding ferroelectrics. Science 385, 53–56 (2024).
Bian, R. et al. Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science 385, 57–62 (2024).
Li, H. et al. Global control of stacking-order phase transition by doping and electric field in few-layer graphene. Nano Lett. 20, 3106–3112 (2020).
Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).
Atri, S. S. et al. Spontaneous electric polarization in graphene polytypes. Adv. Phys. Res. 3, 2300095 (2024).
Cao, W. et al. Polarization saturation in multilayered interfacial ferroelectrics. Adv. Mater. 36, 2400750 (2024).
Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).
Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).
Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).
Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).
Hirano, M. & Shinjo, K. Atomistic locking and friction. Phys. Rev. B 41, 11837–11851 (1990).
Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).
Leven, I., Krepel, D., Shemesh, O. & Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 4, 115–120 (2013).
Constantinescu, G., Kuc, A. & Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104 (2013).
Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).
Gruverman, A. et al. Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors. Appl. Phys. Lett. 83, 728–730 (2003).
Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 335, 59–61 (2012).
Tsuji, T., Irihama, H. & Yamanaka, K. Observation of anomalous dislocation behavior in graphite using ultrasonic atomic force microscopy. Jpn. J. Appl. Phys. 41, 832–835 (2002).
Jiang, L. et al. Manipulation of domain-wall solitons in bi- and trilayer graphene. Nat. Nanotechnol. 13, 204–208 (2018).
Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).
Yang, Y. et al. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 6, eabd3655 (2020).
Gilbert, S. M. et al. Alternative stacking sequences in hexagonal boron nitride. 2D Mater. 6, 021006 (2019).
Wu, H. et al. Direct visualization and manipulation of stacking orders in few-layer graphene by dynamic atomic force microscopy. J. Phys. Chem. Lett. 12, 7328–7334 (2021).
Inbar, A. et al. The quantum twisting microscope. Nature 614, 682–687 (2023).
Tang, H. et al. On-chip multi-degree-of-freedom control of two-dimensional materials. Nature 632, 1038–1044 (2024).
Nery, J. P., Calandra, M. & Mauri, F. Long-range rhombohedral-stacked graphene through shear. Nano Lett. 20, 5017–5023 (2020).
Bosse, J. L., Lee, S., Andersen, A. S., Sutherland, D. S. & Huey, B. D. High speed friction microscopy and nanoscale friction coefficient mapping. Meas. Sci. Technol. 25, 115401 (2014).
Zhang, X., Yu, K., Lang, H., Huang, Y. & Peng, Y. Friction reduction of suspended multilayer h-BN based on electrostrain. Appl. Surf. Sci. 611, 155312 (2023).
Yeo, Y. Polytype switching by super lubricant van der Waals cavity arrays. Zenodo https://doi.org/10.5281/zenodo.14082606 (2024).