Thursday, January 23, 2025
No menu items!
HomeNaturePolyclonal-to-monoclonal transition in colorectal precancerous evolution

Polyclonal-to-monoclonal transition in colorectal precancerous evolution

  • Curtius, K., Wright, N. A. & Graham, T. A. Evolution of premalignant disease. Cold Spring Harb. Perspect. Med. 7, a026542 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Rane, J. K., Frankell, A. M., Weeden, C. E. & Swanton, C. Clonal evolution in healthy and premalignant tissues: implications for early cancer interception strategies. Cancer Prev. Res. 16, 369–378 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct. Target. Ther. 9, 149 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, K. et al. Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat. Methods 18, 1506–1514 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curtius, K., Wright, N. A. & Graham, T. A. An evolutionary perspective on field cancerization. Nat. Rev. Cancer 18, 19–32 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M. & Wallace, M. B. Colorectal cancer. Lancet 394, 1467–1480 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsons, B. L. Multiclonal tumor origin: evidence and implications. Mutat. Res. Rev. Mutat. Res. 777, 1–18 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, B. et al. Very large hidden genetic diversity in one single tumor: evidence for tumors-in-tumor. Natl Sci. Rev. 9, nwac250 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, M. M. et al. Molecular recording of mammalian embryogenesis. Nature 570, 77–82 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923 e1925 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12, 1295–1309 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, Q. et al. Genomic variants in mouse model induced by azoxymethane and dextran sodium sulfate improperly mimic human colorectal cancer. Sci Rep. 7, 25 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457–462 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leystra, A. A. et al. Multi-ancestral origin of intestinal tumors: Impact on growth, progression, and drug efficacy. Cancer Rep. 5, e1459 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Novelli, M. R. et al. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science 272, 1187–1190 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Merritt, A. J., Gould, K. A. & Dove, W. F. Polyclonal structure of intestinal adenomas in ApcMin/+ mice with concomitant loss of Apc+ from all tumor lineages. Proc. Natl Acad. Sci. USA 94, 13927–13931 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halberg, R. B. & Dove, W. F. Polyclonal tumors in the mammalian intestine: are interactions among multiple initiated clones necessary for tumor initiation, growth, and progression? Cell Cycle 6, 44–51 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, S., Gong, H., Zhang, D., Zhang, M. & He, X. A statistical method for quantifying progenitor cells reveals incipient cell fate commitments. Nat. Methods 21, 597–608 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olafsson, S. et al. Somatic evolution in non-neoplastic IBD-affected colon. Cell 182, 672–684.e611 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e1021 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potten, C. S. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos. Trans. R. Soc. B 353, 821–830 (1998).

    Article 
    CAS 

    Google Scholar
     

  • van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, K. K. et al. Spatiotemporal genomic profiling of intestinal metaplasia reveals clonal dynamics of gastric cancer progression. Cancer Cell 41, 2019–2037.e8 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gay, D. M. et al. Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer. Nat. Commun. 10, 723 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heide, T. et al. The co-evolution of the genome and epigenome in colorectal cancer. Nature 611, 733–743 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vega, P. N. et al. Cancer-associated fibroblasts and squamous epithelial cells constitute a unique microenvironment in a mouse model of inflammation-induced colon cancer. Front. Oncol. 12, 878920 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, R. Y., Black, A. & Qian, B. Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 43, 546–563 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katzenelenbogen, Y. et al. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885.e819 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teller, I. C. & Beaulieu, J. F. Interactions between laminin and epithelial cells in intestinal health and disease. Expert Rev. Mol. Med. https://doi.org/10.1017/S1462399401003623 (2001).

  • Thliveris, A. T. et al. Polyclonality of familial murine adenomas: analyses of mouse chimeras with low tumor multiplicity suggest short-range interactions. Proc. Natl Acad. Sci. USA 102, 6960–6965 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 473–483 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, N. D., Kaveh, K. & Bozic, I. Clonal interactions in cancer: Integrating quantitative models with experimental and clinical data. Semin. Cancer Biol. 92, 61–73 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Reeves, M. Q., Kandyba, E., Harris, S., Del Rosario, R. & Balmain, A. Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20, 699–709 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, K. E. et al. Cancer cell population growth kinetics at low densities deviate from the exponential growth model and suggest an Allee effect. PLoS Biol. 17, e3000399 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, P. et al. Dynamic clonal equilibrium and predetermined cancer risk in Barrett’s oesophagus. Nat. Commun. 7, 12158 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D., Zhang, A., He, X. & Deng, S. Variation in cancer risk between organs can not be explained by the degree of somatic clonal expansion. Adv. Biotechnol. 2, 18 (2024).

    Article 

    Google Scholar
     

  • Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gschwantler, M. et al. High-grade dysplasia and invasive carcinoma in colorectal adenomas: a multivariate analysis of the impact of adenoma and patient characteristics. Eur. J. Gastroenterol. Hepatol. 14, 183–188 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Sawhney, M. S., Dickstein, J., LeClair, J., Lembo, C. & Yee, E. Adenomas with high-grade dysplasia and early adenocarcinoma are more likely to be sessile in the proximal colon. Colorectal Dis. 17, 682–688 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson, J. A. & Odze, R. D. Pathology of premalignant colorectal neoplasia. Dig. Endosc. 28, 312–323 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kuo, E., Wang, K. & Liu, X. A focused review on advances in risk stratification of malignant polyps. Gastroenterology Res. 13, 163–183 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11 10 11–11 10 33 (2013).


    Google Scholar
     

  • Benjamin, D. et al. Calling somatic SNVs and indels with Mutect2. Preprint at bioRxiv https://doi.org/10.1101/861054v1 (2019).

  • Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha, G. et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res. 24, 1881–1893 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarabichi, M. et al. A practical guide to cancer subclonal reconstruction from DNA sequencing. Nat. Methods 18, 144–155 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lange, S. et al. Analysis pipelines for cancer genome sequencing in mice. Nat. Protoc. 15, 266–315 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Cock, P. J. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26, 64–70 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lips, E. H. et al. Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer. Nat. Genet. 54, 850–860 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Genomic and transcriptomic profiling of carcinogenesis in patients with familial adenomatous polyposis. Gut 69, 1283–1293 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e318 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 e324 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 23, 27 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D. & Marioni, J. C. Differential abundance testing on single-cell data using k-nearest neighbor graphs. Nat. Biotechnol. 40, 245–253 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Browaeys, R. et al. MultiNicheNet: a flexible framework for differential cell-cell communication analysis from multi-sample multi-condition single-cell transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2023.06.13.544751v1 (2023).

  • Lu. Z. et al. Systematic lineage tracing unveils polyclonal origin and evolution in colorectal precancer. Zenodo https://doi.org/10.5281/zenodo.11647317 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments