Thursday, October 30, 2025
No menu items!
HomeNaturePlug-in strategy for resistance engineering inspired by potato NLRome

Plug-in strategy for resistance engineering inspired by potato NLRome

  • Fry, W. Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant Pathol. 9, 385–402 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, B. A. & Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Plant Pathol. 40, 349–379 (2002).


    Google Scholar
     

  • Lindhout, P., et al. Towards F1 hybrid seed potato breeding. Potato Res. 54, 301–312 (2011).

    Article 

    Google Scholar
     

  • Li, Y., Li, G., Li, C., Qu, D. & Huang, S. Prospects of diploid hybrid breeding in potato. Chinese Potato J. 27, 96–99 (2013).


    Google Scholar
     

  • Stokstad, E. The new potato. Science 363, 574–577 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Genome design of hybrid potato. Cell 184, 3873–3883 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jansky, S. H. et al. Reinventing potato as a diploid inbred line-based crop. Crop Sci. 56, 1412–1422 (2016).

    Article 

    Google Scholar
     

  • Dong, S. & Zhou, S. Potato late blight caused by Phytophthora infestans: from molecular interactions to integrated management strategies. J. Integr. Agric. 21, 3456–3466 (2022).

    Article 

    Google Scholar
     

  • Yoshida, K. et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2, e00731 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vleeshouwers, V. G. A. A. et al. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 49, 507–531 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Paluchowska, P., Śliwka, J. & Yin, Z. Late blight resistance genes in potato breeding. Planta 255, 127 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballvora, A. et al. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J. 30, 361–371 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Lokossou, A. A. et al. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Mol. Plant Microbe Interact. 22, 630–641 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, S. et al. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J. 42, 251–261 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Mundt, C. C. Pyramiding for resistance durability: theory and practice. Phytopathology 108, 792–802 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Baggs, E., Dagdas, G. & Krasileva, K. V. NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Curr. Opin. Plant Biol. 38, 59–67 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Monteiro, F. & Nishimura, M. T. Structural, functional, and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annu. Rev. Phytopathol. 56, 243–267 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Adachi, H., Derevnina, L. & Kamoun, S. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Curr. Opin. Plant Biol. 50, 121–131 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tamborski, J. & Krasileva, K. V. Evolution of plant NLRs: from natural history to precise modifications. Annu. Rev. Plant Biol. 71, 355–378 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wu, C. H. et al. NLR network mediates immunity to diverse plant pathogens. Proc. Natl Acad. Sci. USA 114, 8113–8118 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuang, H., Woo, S.-S., Meyers, B. C., Nevo, E. & Michelmore, R. W. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16, 2870–2894 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witek, K. et al. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat. Biotechnol. 34, 656–660 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Witek, K. et al. A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nat. Plants 7, 198–208 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jupe, F. et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 76, 530–544 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 37, 139–143 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652–655 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, S. et al. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol. 18, 210 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van de Weyer, A. L. et al. A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana. Cell 178, 1260–1272 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seong, K., Seo, E., Witek, K., Li, M. & Staskawicz, B. Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. New Phytol. 227, 1530–1543 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Shang, L. et al. A super pan-genomic landscape of rice. Cell Res. 32, 878–896 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature 475, 189–195 (2011).

    Article 

    Google Scholar
     

  • Pham, G. M. et al. Construction of a chromosome-scale long-read reference genome assembly for potato. Gigascience 9, giaa100 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. The gap-free potato genome assembly reveals large tandem gene clusters of agronomical importance in highly repeated genomic regions. Mol. Plant 16, 314–317 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, D. et al. Genome evolution and diversity of wild and cultivated potatoes. Nature 606, 535–541 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spooner, D. M., Ghislain, M., Simon, R., Jansky, S. H. & Gavrilenko, T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot. Rev. 80, 283–383 (2014).

    Article 

    Google Scholar
     

  • Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ou, S., Chen, J. & Jiang, N. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 46, e126 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kourelis, J., Sakai, T., Adachi, H. & Kamoun, S. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biol. 19, e3001124 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H.-Y. et al. Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR clade in seed plants. New Phytol. 229, 532–547 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Adachi, H. et al. An atypical NLR protein modulates the NRC immune receptor network in Nicotiana benthamiana. PLoS Genet. 19, e1010500 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J. et al. Phytophthora effectors modulate genome-wide alternative splicing of host mRNAs to reprogram plant immunity. Mol. Plant 13, 1470–1484 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Izarra, M. & Lindqvist-Kreuze, H. Expression of RXLR effectors in the EC-1 clonal lineage of Phytophthora infestans in Peru. Rev. Peruana Biol. 23, 293–299 (2016).

    Article 

    Google Scholar
     

  • Zheng, X. et al. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLoS Pathog. 10, e1004057 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliva, R. F. et al. A recent expansion of the RXLR effector gene Avrblb2 is maintained in global populations of Phytophthora infestans indicating different contributions to virulence. Mol. Plant Microbe Interact. 28, 901–912 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Du, Y. et al. Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. New Phytol. 229, 501–515 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, S. et al. An updated conventional- and a novel GM potato late blight R gene differential set for virulence monitoring of Phytophthora infestans. Euphytica 202, 219–234 (2015).

    Article 

    Google Scholar
     

  • Xiao, Y. et al. Activation and inhibition mechanisms of a plant helper NLR. Nature 639, 438–446 (2025).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ortiz, R. & Ehlenfeldt, M. K. The importance of endosperm balance number in potato breeding and the evolution of tuber-bearing Solanum species. Euphytica 60, 105–113 (1992).

    Article 

    Google Scholar
     

  • Shao, W. et al. Development of an NLR-ID toolkit and identification of novel disease-resistance genes in soybean. Plants 13, 668 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishimura, M. T., Monteiro, F. & Dangl, J. L. Treasure your exceptions: unusual domains in immune receptors reveal host virulence targets. Cell 161, 957–960 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 186, 2313–2328 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kozakov, D. et al. The ClusPro web server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goss, E. M. et al. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc. Natl Acad. Sci. USA 111, 8791–8796 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansky, S. Overcoming hybridization barriers in potato. Plant Breed. 125, 1–12 (2006).

    Article 

    Google Scholar
     

  • Ramon, M. & Hanneman, R. E. Introgression of resistance to late blight (Phytophthora infestans) from Solanum pinnatisectum into S. tuberosum using embryo rescue and double pollination. Euphytica 127, 421–435 (2002).

    Article 

    Google Scholar
     

  • Mao, Y., Botella, J. R., Liu, Y. & Zhu, J.-K. Gene editing in plants: progress and challenges. Natl Sci. Rev. 6, 421–437 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, H.-K. et al. Effector‐dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi‐amr3 and Rpi‐amr1. EMBO J. 42, e111484 (2023).

  • Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, D. et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D., Landmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: unsupervised RNA-seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767–769 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y. O. & Borodovsky, M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 33, 6494–6506 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korf, I. Gene finding in novel genomes. BMC Bioinform. 5, 59 (2004).

    Article 

    Google Scholar
     

  • Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Tomato Genome Sequencing Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, Q. et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat. Genet. 52, 1018–1023 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, N. et al. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat. Genet. 55, 852–860 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steuernagel, B. et al. The NLR-Annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 183, 468–482 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, C. Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Osuna-Cruz, C. M. et al. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res. 46, D1197–D1201 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • van Wersch, S. & Li, X. Stronger when together: clustering of plant NLR disease resistance genes. Trends Plant Sci. 24, 688–699 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem. Biophys. Res. Commun. 419, 779–781 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. PanGP: a tool for quickly analyzing bacterial pan-genome profile. Bioinformatics 30, 1297–1299 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarris, P. F., Cevik, V., Dagdas, G., Jones, J. D. G. & Krasileva, K. V. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 14, 8 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae tribe as a pilot practice in the plant pangenomic era. Mol. Plant 13, 1694–1708 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. X., Yeung, J. M., Cherny, S. S. & Sham, P. C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 131, 747–756 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. A modified Agrobacterium-mediated transformation for two oomycete pathogens. PLoS Pathog. 19, e1011346 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Custom codes in the potato NLRome paper. Zenodo https://doi.org/10.5281/zenodo.14211048 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments