Thursday, December 12, 2024
No menu items!
HomeNaturePlacenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia

Placenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia

  • Chappell, L. C., Cluver, C. A., Kingdom, J. & Tong, S. Pre-eclampsia. Lancet 398, 341–354 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swingle, K. L., Ricciardi, A. S., Peranteau, W. H. & Mitchell, M. J. Delivery technologies for women’s health applications. Nat. Rev. Bioeng. 1, 408–425 (2023).

  • Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. New Engl. J. Med. 379, 11–21 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geisler, H. C., Safford, H. C. & Mitchell, M. J. Rational design of nanomedicine for placental disorders: birthing a new era in women’s reproductive health. Small 20, 2300852 (2023).

    Article 

    Google Scholar
     

  • Gilbert, J. S. et al. Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placentalischemia-induced hypertension. Hypertension 55, 380–385 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mateus, J. et al. Endothelial growth factor therapy improves preeclampsia-like manifestations in a murine model induced by overexpression of sVEGFR-1. Am. J. Physiol. Heart Circ. Physiol. 301, H1781–H1787 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension 50, 686–692 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • David, A. L. et al. Local delivery of VEGF adenovirus to the uterine artery increases vasorelaxation and uterine blood flow in the pregnant sheep. Gene Ther. 15, 1344–1350 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • David, A. L. Maternal uterine artery VEGF gene therapy for treatment of intrauterine growth restriction. Placenta 59, S44–S50 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehta, V. et al. Long-term increase in uterine blood flow is achieved by local overexpression of VEGF-A 165 in the uterine arteries of pregnant sheep. Gene Ther. 19, 925–935 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carr, D. J. et al. Uteroplacental adenovirus vascular endothelial growth factor gene therapy increases fetal growth velocity in growth-restricted sheep pregnancies. Hum. Gene Ther. 25, 375–384 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woods, A. K. et al. Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice. Hypertension 57, 94–102 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haase, N. et al. RNA interference therapeutics targeting angiotensinogen ameliorate preeclamptic phenotype in rodent models. J. Clin. Invest. 130, 2928–2942 (2020).

  • Turanov, A. A. et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat. Biotechnol. 36, 1164–1173 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swingle, K. L., Hamilton, A. G. & Mitchell, M. J. Lipid nanoparticle-mediated delivery of mRNA therapeutics and vaccines. Trends Mol. Med. 27, 616–617 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polack Fernando, P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New Engl. J. Med. 383, 2603–2615 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baden Lindsey, R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, Y., Kinami, Y., Hashiba, K. & Harashima, H. Different kinetics for the hepatic uptake of lipid nanoparticles between the apolipoprotein E/low density lipoprotein receptor and the N-acetyl-d-galactosamine/asialoglycoprotein receptor pathway. J. Control. Release 322, 217–226 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swingle, K. L. et al. Ionizable lipid nanoparticles for in vivo mRNA delivery to the placenta during pregnancy. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.2c12893 (2023).

  • Young, R. E. et al. Systematic development of ionizable lipid nanoparticles for placental mRNA delivery using a design of experiments approach. Bioact. Mater. 34, 125–137 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhary, N. et al. Lipid nanoparticle structure and delivery route during pregnancy dictate mRNA potency, immunogenicity, and maternal and fetal outcomes. Proc. Natl Acad. Sci. USA 121, e2307810121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Safford, H. C. et al. Orthogonal design of experiments for engineering of lipid nanoparticles for mRNA delivery to the placenta. Small 20, e2303568 (2024).

    PubMed 

    Google Scholar
     

  • Geisler, H. C. et al. EGFR-targeted ionizable lipid nanoparticles enhance in vivo mRNA delivery to the placenta. J. Control. Release 371, 455–469 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid selivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huayamares, S. G. et al. High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J. Control. Release 357, 394–403 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Mayta, R. et al. A nanoparticle platform for accelerated in vivo oral delivery screening of nucleic acids. Adv. Ther. 4, 2000111 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA 107, 1864–1869 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. 124, 8657–8661 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dusse, L. M. et al. Revisiting HELLP syndrome. Clin. Chim. Acta 451, 117–120 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fenton, O. S. et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv. Mater. 29, 1606944 (2017).

    Article 

    Google Scholar
     

  • Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 9926–9937 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive Sscreening designs. Nano Lett. 15, 7300–7306 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Billingsley, M. M. et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 22, 533–542 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Swingle, K. L. et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J. Control. Release 341, 616–633 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parhiz, H. et al. PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J. Control. Release 291, 106–115 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irvin-Choy, N. S., Nelson, K. M., Dang, M. N., Gleghorn, J. P. & Day, E. S. Gold nanoparticle biodistribution in pregnant mice following intravenous administration varies with gestational age. Nanomed. Nanotechnol. Biol. Med. 36, 102412 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Raz, T. et al. The hemodynamic basis for positional- and inter-fetal dependent effects in dual arterial supply of mouse pregnancies. PLoS ONE 7, e52273 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kertschanska, S., Kosanke, G. & Kaufmann, P. Pressure dependence of so-called transtrophoblastic channels during fetal perfusion of human placental villi. Microsc. Res. Tech. 38, 52–62 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kertschanska, S., Stulcová, B., Kaufmann, P. & Stulc, J. Distensible transtrophoblastic channels in the rat placenta. Placenta 21, 670–677 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bashiri, G. et al. Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab Chip 23, 1432–1466 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chamley, L. W., Allen, J. L. & Johnson, P. M. Synthesis of β2 glycoprotein 1 by the human placenta. Placenta 18, 403–410 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robertson, S. A. et al. Effect of β2‐glycoprotein I null mutation on reproductive outcome and antiphospholipid antibody‐mediated pregnancy pathology in mice. Mol. Hum. Reprod. 10, 409–416 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waker, C. A., Kaufman, M. R. & Brown, T. L. Current state of preeclampsia mouse models: approaches, relevance, and standardization. Front. Physiol. 12, 681632 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, X., Yang, Z., Han, Y. & Yu, H. Correlation of long-chain fatty acid oxidation with oxidative stress and inflammation in pre-eclampsia-like mouse models. Placenta 36, 1442–1449 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huai, J., Yang, Z., Yi, Y.-H. & Wang, G.-J. Different effects of pravastatin on preeclampsia-like symptoms in different mouse models. Chin. Med. J. (Engl.) 131, 461–470 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swingle, K. L., Hamilton, A. G. & Mitchell, M. J. Flow cytometric analysis of the murine placenta to evaluate nanoparticle platforms during pregnancy. Placenta https://doi.org/10.1016/j.placenta.2024.08.007 (2024).

  • Umapathy, A., Chamley, L. W. & James, J. L. Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies. Angiogenesis 23, 105–117 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Aneman, I. et al. Mechanisms of key innate immune cells in early- and late-onset preeclampsia. Front. Immunol. 11, 1864 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergmann, A. et al. Reduction of circulating soluble Flt-1 alleviates preeclampsia-like symptoms in a mouse model. J. Cell. Mol. Med. 14, 1857–1867 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, H. et al. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci. Transl. Med. 8, 331ra40 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton, A. G., Swingle, K. L. & Mitchell, M. J. Biotechnology: overcoming biological barriers to nucleic acid delivery using lipid nanoparticles. PLoS Biol. 21, e3002105 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Y. et al. Non-viral vectors for RNA delivery. J. Control. Release 342, 241–279 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefanovic, V. International Academy of Perinatal Medicine (IAPM) guidelines for screening, prediction, prevention and management of pre-eclampsia to reduce maternal mortality in developing countries. J. Perinat. Med. 51, 164–169 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardi, N., Muramatsu, H., Weissman, D. & Karikó, K. in Synthetic Messenger RNA and Cell Metabolism Modulation: Methods and Protocols Vol. 969 (ed. Rabinovich, P. M.) 29–42 (Humana, 2013).

  • Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Weissman, D., Pardi, N., Muramatsu, H. & Karikó, K. in Synthetic Messenger RNA and Cell Metabolism Modulation: Methods and Protocols (ed. Rabinovich, P. M.) 43–54 (Humana, 2013).

  • Zhang, R. et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater. Sci. 9, 1449–1463 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajj, K. A. et al. Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH. Small 15, 1805097 (2019).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments