Friday, November 14, 2025
No menu items!
HomeNaturePhotoinduced twist and untwist of moiré superlattices

Photoinduced twist and untwist of moiré superlattices

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, H. et al. Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures. Nat. Phys. 18, 30–36 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carr, S., Fang, S. & Kaxiras, E. Electronic-structure methods for twisted moiré layers. Nat. Rev. Mater. 5, 748–763 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Maity, I., Maiti, P. K., Krishnamurthy, H. & Jain, M. Reconstruction of moiré lattices in twisted transition metal dichalcogenide bilayers. Phys. Rev. B 103, L121102 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nam, N. N. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

    Article 

    Google Scholar
     

  • Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X.-W. et al. Polarization-driven band topology evolution in twisted MoTe2 and WSe2. Nat. Commun. 15, 4223 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell, A. J. et al. Exciton-polarons in the presence of strongly correlated electronic states in a MoSe2/WSe2 moiré superlattice. NPJ 2D Mater. Appl. 6, 79 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Arsenault, E. A. et al. Two-dimensional moiré polaronic electron crystals. Phys. Rev. Lett. 132, 126501 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas, S. et al. Exciton polaron formation and hot-carrier relaxation in rigid Dion–Jacobson-type two-dimensional perovskites. Nat. Mater. 23, 937–943 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Z., Lian, C., Lafuente-Bartolome, J. & Giustino, F. Excitonic polarons and self-trapped excitons from first-principles exciton-phonon couplings. Phys. Rev. Lett. 132, 036902 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barré, E. et al. Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures. Science 376, 406–410 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duncan, C. J. R. et al. Multi-scale time-resolved electron diffraction: a case study in moiré materials. Ultramicroscopy 253, 113771 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, W., Zhang, B., Sun, Y., He, L. & Ni, Y. Atomic reconstruction enabled coupling between interlayer distance and twist in van der Waals bilayers. Extreme Mech. Lett. 69, 102159 (2024).

    Article 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, T., Sun, H., Li, X. & Zhang, L. Chiral phonons: prediction, verification, and application. Nano Lett. 24, 4311–4318 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. H. et al. A kiloelectron-volt ultrafast electron micro-diffraction apparatus using low emittance semiconductor photocathodes. Struct. Dyn. 9, 024302 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr, S. et al. Relaxation and domain formation in incommensurate two-dimensional heterostructures. Phys. Rev. B 98, 224102 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sung, S. H. et al. Torsional periodic lattice distortions and diffraction of twisted 2D materials. Nat. Commun. 13, 7826 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Britt, T. L. et al. Direct view of phonon dynamics in atomically thin MoS2. Nano Lett. 22, 4718–4724 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sood, A. et al. Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer. Nat. Nanotechnol. 18, 29–35 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, A. C. et al. Hidden phonon highways promote photoinduced interlayer energy transfer in twisted transition metal dichalcogenide heterostructures. Sci. Adv. 10, 8819 (2024).

    Article 

    Google Scholar
     

  • Wang, J. et al. Optical generation of high carrier densities in 2D semiconductor heterobilayers. Sci. Adv. 5, eaax0145 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Coherent phonons in van der Waals MoSe2/WSe2 heterobilayers. Nano Lett. 23, 8186–8193 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mannebach, E. M. et al. Dynamic optical tuning of interlayer interactions in the transition metal dichalcogenides. Nano Lett. 17, 7761–7766 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, H. et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 17, 3591–3598 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, Z. et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 11, 12020–12026 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gillen, R. & Maultzsch, J. Interlayer excitons in MoSe2/WSe2 heterostructures from first principles. Phys. Rev. B 97, 165306 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Schmitt, D. et al. Formation of moiré interlayer excitons in space and time. Nature 608, 499–503 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geng, W. T. et al. Displacement vorticity as the origin of moiré potentials in twisted WSe2/MoSe2 bilayers. Matter 6, 493–505 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S., Mendez-Valderrama, J. F., Wang, X. & Chowdhury, D. Theory of correlated insulators and superconductor at ν = 1 in twisted WSe2. Nat. Commun. 16, 1701 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, C. et al. Lasing of moiré trapped MoSe2/WSe2 interlayer excitons coupled to a nanocavity. Sci. Adv. 10, eadk6359 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, G. F., Calado, V. E., Zandbergen, H., Vandersypen, L. M. & Dekker, C. Wedging transfer of nanostructures. Nano Lett. 10, 1912–1916 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, J.-W. & Zhou, Y.-P. (eds) Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals (InTech, 2017).

  • Naik, M. H., Maity, I., Maiti, P. K. & Jain, M. Kolmogorov–Crespi potential for multilayer transition-metal dichalcogenides: capturing structural transformations in moiré superlattices. J. Phys. Chem. C 123, 9770–9778 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Naik, S., Naik, M. H., Maity, I. & Jain, M. Twister: construction and structural relaxation of commensurate moiré superlattices. Comput. Phys. Commun. 271, 108184 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J., Xiang, Y., Ferrari, B. M., Scalise, E. & Vanacore, G. M. Indirect exciton–phonon dynamics in MoS2 revealed by ultrafast electron diffraction. Adv. Funct. Mater. 33, 2206395 (2023).

    Article 
    CAS 

    Google Scholar
     

  • González-Manteiga, W. & Crujeiras, R. M. An updated review of goodness-of-fit tests for regression models. Test 22, 361–411 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments