Friday, April 4, 2025
No menu items!
HomeNaturePhotoinduced copper-catalysed deracemization of alkyl halides

Photoinduced copper-catalysed deracemization of alkyl halides

  • Huang, M., Pan, T., Jiang, X. & Luo, S. Catalytic deracemization reactions. J. Am. Chem. Soc. 145, 10917–10929 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Großkopf, J. & Bach, T. Catalytic photochemical deracemization via short-lived intermediates. Angew. Chem. Int. Edn 62, e202308241 (2023).


    Google Scholar
     

  • Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Großkopf, J. et al. Photochemical deracemization at sp3-hybridized carbon centers via a reversible hydrogen atom transfer. J. Am. Chem. Soc. 143, 21241–21245 (2021).

    PubMed 

    Google Scholar
     

  • Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Onneken, C. et al. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 621, 753–759 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen, L. et al. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 382, 458–464 (2023).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Blackmond, D. G. “If pigs could fly” chemistry: a tutorial on the principle of microscopic reversibility. Angew. Chem. Int. Edn 48, 2648–2654 (2009).

    CAS 
    MATH 

    Google Scholar
     

  • Li, X. et al. Photochemically induced ring opening of spirocyclopropyl oxindoles: evidence for a triplet 1,3-diradical intermediate and deracemization by a chiral sensitizer. Angew. Chem. Int. Edn 59, 21640–21647 (2020).

    CAS 
    MATH 

    Google Scholar
     

  • Wang, J. et al. Enantioselective [2 + 2] photocycloreversion enables de novo deracemization synthesis of cyclobutanes. J. Am. Chem. Soc. 146, 22840–22849 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Cossy, J. (ed.) Comprehensive Chirality (Academic, 2024).

  • Mizuta, S., Kitamura, K., Kitagawa, A., Yamaguchi, T. & Ishikawa, T. Silver-promoted fluorination reactions of α-bromoamides. Chem. Eur. J. 27, 5930–5935 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Akagawa, H. et al. Carboxamide-directed stereospecific couplings of chiral tertiary alkyl halides with terminal alkynes. ACS Catal. 12, 9831–9838 (2022).

    CAS 
    MATH 

    Google Scholar
     

  • Ishida, S., Takeuchi, K., Taniyama, N., Sunada, Y. & Nishikata, T. Copper-catalyzed amination of congested and functionalized α-bromocarboxamides with either amines or ammonia at room temperature. Angew. Chem. Int. Edn 56, 11610–11614 (2017).

    CAS 

    Google Scholar
     

  • Fantinati, A., Zanirato, V., Marchetti, P. & Trapella, C. The fascinating chemistry of α-haloamides. ChemistryOpen 9, 100–170 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishikata, T. α-Halocarbonyls as a valuable functionalized tertiary alkyl source. ChemistryOpen 13, e202400108 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Gribble, G. W. Naturally Occurring Organohalogen Compounds—A Comprehensive Review (Springer, 2023).

  • Gribble, G. W. Biological activity of recently discovered halogenated marine natural products. Mar. Drugs 13, 4044–4136 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chiodi, D. & Ishihara, Y. “Magic chloro”: profound effects of the chlorine atom in drug discovery. J. Med. Chem. 66, 5305–5331 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gerebtzoff, G., Li-Blatter, X., Fischer, H., Frentzel, A. & Seelig, A. Halogenation of drugs enhances membrane binding and permeation. ChemBioChem 5, 676–684 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Hernandes, M. Z., Cavalcanti, S. M. T., Moreira, D. R. M., de Azevedo Junior, W. F. & Leite, A. C. L. Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr. Drug Targets 11, 303–314 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Bouzbouz, S. & Cahard, D. in Comprehensive Chirality (ed. Cossy, J.) Ch. 7.09 (Academic, 2024).

  • Shibatomi, K. Alternative synthetic strategies for enantioselective construction of halogenated chiral carbon centers. Synthesis 2010, 2679–2702 (2010).

  • Gómez-Martinez, M., Alonso, D. A., Pastor, I. M., Guillena, G. & Baeza, A. Organocatalyzed assembly of chlorinated quaternary stereogenic centers. Asian J. Org. Chem. 5, 1428–1437 (2016).


    Google Scholar
     

  • Liu, Y., Leng, H.-J., Li, Q.-Z. & Li, J.-L. Catalytic strategies for the asymmetric construction of cyclic frameworks with a halogenated tetrasubstituted stereocenter. Adv. Synth. Catal. 362, 3926–3947 (2020).

    CAS 
    MATH 

    Google Scholar
     

  • Zhang, X. & Tan, C.-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers. Chem 7, 1451–1486 (2021).

    CAS 
    MATH 

    Google Scholar
     

  • Smith, A. M. R. & Hii, K. K. Transition metal catalyzed enantioselective α-heterofunctionalization of carbonyl compounds. Chem. Rev. 111, 1637–1656 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Shibatomi, K. & Narayama, A. Catalytic enantioselective α-chlorination of carbonyl compounds. Asian J. Org. Chem. 2, 812–823 (2013).

    CAS 

    Google Scholar
     

  • Wang, M. et al. Asymmetric hydrogenation of ketimines with minimally different alkyl groups. Nature 631, 556–562 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • D’Angeli, F. & Marchetti, P. 2-Bromoamides. Stereocontrolled substitution and application to the synthesis of compounds of biological interest. Industr. Chem. Libr. 7, 160–170 (1995).

    MATH 

    Google Scholar
     

  • Wu, D., Fan, W., Wu, L., Chen, P. & Liu, G. Copper-catalyzed enantioselective radical chlorination of alkenes. ACS Catal. 12, 5284–5291 (2022).

    CAS 
    MATH 

    Google Scholar
     

  • Li, Z. et al. Catalytic enantioselective nucleophilic α-chlorination of ketones with NaCl. J. Am. Chem. Soc. 146, 2779–2788 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhu, Y. et al. Modern approaches for asymmetric construction of carbon−fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. Chem. Rev. 118, 3887–3964 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tredwell, M. & Gouverneur, V. in Comprehensive Chirality (eds Carreira, E. M. & Yamamoto, H.) Ch. 1.5 (Academic, 2012).

  • Butcher, T. W. et al. Desymmetrization of difluoromethylene groups by C–F bond activation. Nature 583, 548–553 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhanel, G. G. et al. Solithromycin: a novel fluoroketolide for the treatment of community-acquired bacterial pneumonia. Drugs 76, 1737–1757 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Minko, Y. & Marek, I. Stereodefined acyclic trisubstituted metal enolates towards the asymmetric formation of quaternary carbon stereocentres. Chem. Commun. 50, 12597–12611 (2014).

    CAS 
    MATH 

    Google Scholar
     

  • Jia, Z. & Luo, S. in Comprehensive Chirality (ed. Cossy, J.) Ch. 7.07 (Academic, 2024).

  • Zhang, Y., Vanderghinste, J., Wang, J. & Das, S. Challenges and recent advancements in the synthesis of α,α-disubstituted α-amino acids. Nat. Commun. 15, 1474 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friis, S. D., Pirnot, M. T., Dupuis, L. N. & Buchwald, S. L. A dual palladium and copper hydride catalyzed approach for alkyl–aryl cross‐coupling of aryl halides and olefins. Angew. Chem. Int. Edn 56, 7242–7246 (2017).

    CAS 

    Google Scholar
     

  • Xi, Y. & Hartwig, J. F. Mechanistic studies of copper-catalyzed asymmetric hydroboration of alkenes. J. Am. Chem. Soc. 139, 12758–12772 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, H., Suematsu, H., Oyala, P. H., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism. J. Am. Chem. Soc. 144, 4550–4558 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eaton, G. R., Eaton, S. S., Barr, D. P. & Weber, R. T. Quantitative EPR (Springer, 2010).

  • Schneebeli, S. T., Hall, M. L., Breslow, R. & Friesner, R. Quantitative DFT modeling of the enantiomeric excess for dioxirane-catalyzed epoxidations. J. Am. Chem. Soc. 131, 3965–3973 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, C. et al. Mechanistically guided predictive models for ligand and initiator effects in copper-catalyzed atom transfer radical polymerization (Cu-ATRP). J. Am. Chem. Soc. 141, 7486–7497 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, B., Fang, C., Liu, P. & Ready, J. M. Rhodium-catalyzed enantioselective radical addition of CX4 reagents to olefins. Angew. Chem. Int. Edn 56, 8780–8784 (2017).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments