Saturday, April 19, 2025
No menu items!
HomeNaturePhenotypic complexities of rare heterozygous neurexin-1 deletions

Phenotypic complexities of rare heterozygous neurexin-1 deletions

  • Sudhof, T. C. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell 171, 745–769 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Wit, J. & Ghosh, A. Specification of synaptic connectivity by cell surface interactions. Nat. Rev. Neurosci. 17, 22–35 (2016).

    PubMed 

    Google Scholar
     

  • Gomez, A. M., Traunmüller, L. & Scheiffele, P. Neurexins: molecular codes for shaping neuronal synapses. Nat. Rev. Neurosci. 22, 137–151 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schreiner, D. et al. Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins. Neuron 84, 386–398 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Fuccillo, M. V. et al. Single-cell mRNA profiling reveals cell-type-specific expression of neurexin isoforms. Neuron 87, 326–340 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Matsunami, N. et al. Identification of rare recurrent copy number variants in high-risk autism families and their prevalence in a large ASD population. PLoS ONE 8, e52239 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moller, R. S. et al. Exon-disrupting deletions of NRXN1 in idiopathic generalized epilepsy. Epilepsia 54, 256–264 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ching, M. S. L. et al. Deletions of NRXN1 (neurexin‐1) predispose to a wide spectrum of developmental disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 937–947 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, A. Y. et al. Rare copy number variants in NRXN1 and CNTN6 increase risk for Tourette syndrome. Neuron 94, 1101–1111.e7 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grayton, H. M., Missler, M., Collier, D. A. & Fernandes, C. Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE 8, e67114 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pak, C. et al. Human neuropsychiatric disease modeling using conditional deletion reveals synaptic transmission defects caused by heterozygous mutations in NRXN1. Cell Stem Cell 17, 316–328 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pak, C. et al. Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived NRXN1-mutant neurons. Proc. Natl Acad. Sci. USA 118, e2025598118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebastian, R. et al. Schizophrenia-associated NRXN1 deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids. Nat. Commun. 14, 3770 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flaherty, E. et al. Neuronal impact of patient-specific aberrant NRXN1α splicing. Nat. Genet. 51, 1679–1690 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boxer, E. E. & Aoto, J. Neurexins and their ligands at inhibitory synapses. Front. Synaptic Neurosci. 14, 1087238 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sohal, V. S. & Rubenstein, J. L. R. Excitation–inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol. Psychiatry 24, 1248–1257 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, N. et al. Generation of pure GABAergic neurons by transcription factor programming. Nat. Methods 14, 621–628 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Iijima, T. et al. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 147, 1601–1614 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iijima, T., Iijima, Y., Witte, H. & Scheiffele, P. Neuronal cell type-specific alternative splicing is regulated by the KH domain protein SLM1. J. Cell Biol. 204, 331–342 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Traunmuller, L., Gomez, A. M., Nguyen, T. M. & Scheiffele, P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science 352, 982–986 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Traunmüller, L. et al. A cell-type-specific alternative splicing regulator shapes synapse properties in a trans-synaptic manner. Cell Rep. 42, 112173 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virtanen, M. A., Uvarov, P., Mavrovic, M., Poncer, J. C. & Kaila, K. The multifaceted roles of KCC2 in cortical development. Trends Neurosci. 44, 378–392 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Willsey, H. R. et al. Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron 109, 1409 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gegenhuber, B., Wu, M. V., Bronstein, R. & Tollkuhn, J. Gene regulation by gonadal hormone receptors underlies brain sex differences. Nature 606, 153–159 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saito, Y. et al. Differential NOVA2-mediated splicing in excitatory and inhibitory neurons regulates cortical development and cerebellar function. Neuron 101, 707–720.e5 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paz, I., Kosti, I., Ares, M., Cline, M. & Mandel-Gutfreund, Y. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res. 42, W361–W367 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghanbarian, H., Aghamiri, S., Eftekhary, M., Wagner, N. & Wagner, K.-D. Small activating RNAs: towards the development of new therapeutic agents and clinical treatments. Cells 10, 591 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452.e17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yilmaz, C. et al. Neurosteroids as regulators of neuroinflammation. Front. Neuroendocrinol. 55, 100788 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Brunet De Courssou, J.-B., Durr, A., Adams, D., Corvol, J.-C. & Mariani, L.-L. Antisense therapies in neurological diseases. Brain 145, 816–831 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ingusci, S., Verlengia, G., Soukupova, M., Zucchini, S. & Simonato, M. Gene therapy tools for brain diseases. Front. Pharmacol. 10, 724 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, H.-C. et al. NGN2 induces diverse neuron types from human pluripotency. Stem Cell Rep. 16, 2118–2127 (2021).

    Article 

    Google Scholar
     

  • Trotter, J. H. et al. Compartment-specific neurexin nanodomains orchestrate tripartite synapse assembly. Preprint at bioRxiv https://doi.org/10.1101/2020.08.21.262097 (2020).

  • Zafra, F. & Piniella, D. Proximity labeling methods for proteomic analysis of membrane proteins. J. Proteomics 264, 104620 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bell, J. Stratified medicines: towards better treatment for disease. Lancet 383, S3–S5 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Tsimberidou, A. M. et al. Molecular tumour boards — current and future considerations for precision oncology. Nat. Rev. Clin. Oncol. 20, 843–863 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, H., Colclough, K., Gloyn, A. L. & Pollin, T. I. Monogenic diabetes: a gateway to precision medicine in diabetes. J. Clin. Invest. 131, e142244 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, P. F. & Geschwind, D. H. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177, 162–183 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerasimavicius, L., Livesey, B. J. & Marsh, J. A. Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat. Commun. 13, 3895 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Analyses of the autism-associated neuroligin-3 R451C mutation in human neurons reveal a gain-of-function synaptic mechanism. Mol. Psychiatry 29, 1620–1635 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Pinggera, A. et al. New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy. Hum. Mol. Genet. 26, 2923–2932 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, M. B. et al. Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. Mol. Psychiatry 25, 37–47 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Brunklaus, A. et al. Gene variant effects across sodium channelopathies predict function and guide precision therapy. Brain 145, 4275–4286 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders, S. J. et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci. 41, 442–456 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, G., Gautier, O., Tassoni-Tsuchida, E., Ma, X. R. & Gitler, A. D. ALS genetics: gains, losses, and implications for future therapies. Neuron 108, 822–842 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balendra, R. & Isaacs, A. M. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat. Rev. Neurol. 14, 544–558 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakasam, R. et al. LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice. Nat. Commun. 14, 603 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chintalaphani, S. R., Pineda, S. S., Deveson, I. W. & Kumar, K. R. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun. 9, 98 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, S.-M. et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods 101, 113–124 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rhee, H. J. et al. An autaptic culture system for standardized analyses of iPSC-derived human neurons. Cell Rep. 27, 2212–2228.e7 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Barretto, N. et al. ASCL1- and DLX2-induced GABAergic neurons from hiPSC-derived NPCs. J. Neurosci. Methods 334, 108548 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sloan, S. A., Andersen, J., Pașca, A. M., Birey, F. & Pașca, S. P. Generation and assembly of human brain region-specific three-dimensional cultures. Nat. Protoc. 13, 2062–2085 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Hoffman, G. E. et al. Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nat. Commun. 8, 2225 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics 17, 483 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie, M. E. et al. limma Powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seah, C. et al. Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nat. Neurosci. 25, 1434–1445 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Marinis, I., Lo Surdo, P., Cesareni, G. & Perfetto, L. SIGNORApp: a Cytoscape 3 application to access SIGNOR data. Bioinformatics 38, 1764–1766 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urresti, J. et al. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol. Psychiatry 26, 7560–7580 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Identification and validation of genes affecting aortic lesions in mice. J. Clin. Invest. 120, 2414–2422 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurtenbach, S. & Harbour, J. W. SparK: a publication-quality NGS visualization tool. Preprint at bioRxiv https://doi.org/10.1101/845529 (2019).

  • RELATED ARTICLES

    Most Popular

    Recent Comments