Saturday, April 19, 2025
No menu items!
HomeNaturePhase I trial of hES cell-derived dopaminergic neurons for Parkinson’s disease

Phase I trial of hES cell-derived dopaminergic neurons for Parkinson’s disease

  • Dorsey, E. R. & Bloem, B. R. The Parkinson pandemic—a call to action. JAMA Neurol. 75, 9–10 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Morris, H. R., Spillantini, M. G., Sue, C. M. & Williams-Gray, C. H. The pathogenesis of Parkinson’s disease. Lancet 403, 293–304 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armstrong, M. J. & Okun, M. S. Diagnosis and treatment of Parkinson disease: a review. JAMA 323, 548–560 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Heimrich, K. G., Schönenberg, A., Santos-García, D., Mir, P., Coppadis Study Group & Prell, T. The impact of nonmotor symptoms on health-related quality of life in Parkinson’s disease: a network analysis approach. J. Clin. Med. 12, 2573 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, K. A., Lobb, B. M., Nutt, J. G. & Horak, F. B. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology 75, 1263–1269 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henderson, E. J. et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 249–258 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hauser, R. A. et al. A home diary to assess functional status in patients with Parkinson’s disease with motor fluctuations and dyskinesia. Clin. Neuropharmacol. 23, 75–81 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kremer, N. I. et al. STN-DBS electrode placement accuracy and motor improvement in Parkinson’s disease: systematic review and individual patient meta-analysis. J. Neurol. Neurosurg. Psychiatry 94, 236–244 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Krishna, V. et al. Trial of globus pallidus focused ultrasound ablation in Parkinson’s disease. N. Engl. J. Med. 388, 683–693 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Bond, A. E. et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: a randomized clinical trial. JAMA Neurol. 74, 1412–1418 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang, A. E. et al. Trial of cinpanemab in early Parkinson’s disease. N. Engl. J. Med. 387, 408–420 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagano, G. et al. Trial of prasinezumab in early-stage Parkinson’s disease. N. Engl. J. Med. 387, 421–432 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Standaert, D. G. GLP-1, Parkinson’s disease, and neuroprotection. N. Engl. J. Med. 390, 1233–1234 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Meissner, W. G. et al. Trial of lixisenatide in early Parkinson’s disease. N. Engl. J. Med. 390, 1176–1185 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abeliovich, A., Hefti, F. & Sevigny, J. Gene therapy for Parkinson’s disease associated with GBA1 mutations. J. Parkinsons Dis. 11, S183–S188 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Laar, A. D. et al. An update on gene therapy approaches for Parkinson’s disease: restoration of dopaminergic function. J. Parkinsons Dis. 11, S173–S182 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Bie, R. M. A., Clarke, C. E., Espay, A. J., Fox, S. H. & Lang, A. E. Initiation of pharmacological therapy in Parkinson’s disease: when, why, and how. Lancet Neurol. 19, 452–461 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wenning, G. K. et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann. Neurol. 42, 95–107 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freed, C. R. et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med. 327, 1549–1555 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brundin, P. et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain 123, 1380–1390 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Hagell, P. et al. Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain 122, 1121–1132 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Lindvall, O. et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann. Neurol. 35, 172–180 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peschanski, M. et al. Bilateral motor improvement and alteration of l-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain 117, 487–499 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Olanow, C. W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 54, 403–414 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710–719 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Politis, M. et al. Serotonin neuron loss and nonmotor symptoms continue in Parkinson’s patients treated with dopamine grafts. Sci. Transl. Med. 4, 128ra141 (2012).

    Article 

    Google Scholar
     

  • Kefalopoulou, Z. et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol 71, 83–87 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallett, P. J. et al. Long-term health of dopaminergic neuron transplants in Parkinson’s disease patients. Cell Rep. 7, 1755–1761 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc. Natl Acad. Sci. USA 113, 6544–6549 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinbeck, J. A. et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat. Biotechnol. 33, 204–209 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, T. W. et al. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use. Cell Stem Cell 28, 343–355 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piao, J. et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell 28, 217–229 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudow, G. et al. Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol. 115, 461–470 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagell, P. & Brundin, P. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J. Neuropathol. Exp. Neurol. 60, 741–752 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goetz, C. G. et al. Movement Disorder Society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov. Disord. 22, 41–47 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Nelson, J. et al. Consensus recommendations for use of maintenance immunosuppression in solid organ transplantation: endorsed by the American College of Clinical Pharmacy, American Society of Transplantation, and International Society for Heart and Lung Transplantation: an executive summary. Pharmacotherapy 42, 594–598 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neuberger, J. M. et al. Practical recommendations for long-term management of modifiable risks in kidney and liver transplant recipients: a guidance report and clinical checklist by the Consensus on Managing Modifiable Risk in Transplantation (COMMIT) Group. Transplantation 101, S1–S56 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Martinez–Martin, P., Rodriguez-Blazquez, C. & Forjaz, M. J. in Neuroscience and Biobehavioral Psychology 8–16 (Elsevier, 2017).

  • Shulman, L. M. et al. The clinically important difference on the unified Parkinson’s disease rating scale. Arch. Neurol. 67, 64–70 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Dopamine cell implantation in Parkinson’s disease: long-term clinical and 18F-FDOPA PET outcomes. J. Nucl. Med. 51, 7–15 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, R. A. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease. Nat. Med. 25, 1045–1053 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schweitzer, J. S. et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med. 382, 1926–1932 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirkeby, A. et al. Preclinical quality, safety, and efficacy of a human embryonic stem cell-derived product for the treatment of Parkinson’s disease, STEM-PD. Cell Stem Cell 30, 1299–1314 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patenaude, B., Smith, S. M., Kennedy, D. N. & Jenkinson, M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56, 907–922 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Dhawan, V. et al. Comparative analysis of striatal FDOPA uptake in Parkinson’s disease: ratio method versus graphical approach. J. Nucl. Med. 43, 1324–1330 (2002).

    PubMed 

    Google Scholar
     

  • Jokinen, P. et al. Simple ratio analysis of 18F-fluorodopa uptake in striatal subregions separates patients with early Parkinson disease from healthy controls. J. Nucl. Med. 50, 893–899 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura, T. et al. Blinded positron emission tomography study of dopamine cell implantation for Parkinson’s disease. Ann. Neurol. 50, 181–187 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann. Neurol. 52, 628–634 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments