Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).
Rowland, J. et al. Arctic landscapes in transition: responses to thawing permafrost. Eos 91, 229â230 (2010).
Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55â67 (2022).
Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711â730 (2017).
Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021).
Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832â851 (2022).
Syvitski, J. et al. Earthâs sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 3, 179â196 (2022).
Post, E. et al. The polar regions in a 2°C warmer world. Sci. Adv. 5, eaaw9883 (2019).
Smith, S. L., OâNeill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10â23 (2022).
Rowland, J. C. et al. Scale-dependent influence of permafrost on riverbank erosion rates. J. Geophys. Res. Earth Surf. 128, e2023JF007101 (2023).
Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, e2020JF005706 (2021).
Ielpi, A., Lapôtre, M. G., Finotello, A. & Roy-Léveillée, P. Large sinuous rivers are slowing down in a warming Arctic. Nat. Clim. Change 13, 375â381 (2023).
Kanevskiy, M. et al. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomorphology 253, 370â384 (2016).
Douglas, M. M., Dunne, K. B. & Lamb, M. P. Sediment entrainment and slump blocks limit permafrost riverbank erosion. Geophys. Res. Lett. 50, e2023GL102974 (2023).
Phillips, C. B. et al. Threshold constraints on the size, shape and stability of alluvial rivers. Nat. Rev. Earth Environ. 3, 406â419 (2022).
Douglas, M. M. et al. Organic carbon burial by river meandering partially offsets bank erosion carbon fluxes in a discontinuous permafrost floodplain. Earth Surf. Dyn. 10, 421â435 (2022).
Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P. & Raymond, P. A. et al. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001â2005. Water Resourc. Res. 43, W02411 (2007).
Teufel, B. & Sushama, L. Abrupt changes across the Arctic permafrost region endanger northern development. Nat. Clim. Change 9, 858â862 (2019).
Chadburn, S. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340â344 (2017).
Langhorst, T. & Pavelsky, T. Global observations of riverbank erosion and accretion from Landsat imagery. J. Geophys. Res. Earth Surf. 128, e2022JF006774 (2023).
Chassiot, L., Lajeunesse, P. & Bernier, J.-F. Riverbank erosion in cold environments: review and outlook. Earth-Sci. Rev. 207, 103231 (2020).
Constantine, C. R., Dunne, T. & Hanson, G. J. Examining the physical meaning of the bank erosion coefficient used in meander migration modeling. Geomorphology 106, 242â252 (2009).
Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899â903 (2014).
Sylvester, Z., Durkin, P. & Covault, J. A. High curvatures drive river meandering. Geology 47, 263â266 (2019).
Feng, D. et al. Recent changes to Arctic river discharge. Nat. Commun. 12, 6917 (2021).
Costard, F. et al. Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys. Res. Lett. 34, L14501 (2007).
Costard, F., Dupeyrat, L., Gautier, E. & Carey-Gailhardis, E. Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surf. Process. Landf. 28, 1349â1359 (2003).
Scott, K. M. Effects of permafrost on stream channel behavior in Arctic Alaska. Professional Paper 1068. United States Geological Survey (1978).
Rowland, J. C. et al. A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sens. Environ. 184, 212â228 (2016).
Langhorst, T. & Pavelsky, T. M. Global observations of riverbank erosion and accretion from Landsat imagery. J. Geophys. Res. Earth Surf. 128, e2022JF006774 (2023).
Leprince, S., Barbot, S., Ayoub, F. & Avouac, J.-P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 45, 1529â1558 (2007).
Pastick, N. J. et al. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions. Remote Sens. Environ. 168, 301â315 (2015).
Douglas, M. M. et al. Permafrost formation in a meandering river floodplain. AGU Adv. 5, e2024AV001175 (2024).
Finnegan, N. J. & Dietrich, W. E. Episodic bedrock strath terrace formation due to meander migration and cutoff. Geology 39, 143â146 (2011).
Douglas, M. M., Miller, K. L., Schmeer, M. N. & Lamb, M. P. Ablation-limited erosion rates of permafrost riverbanks. J. Geophys. Res. Earth Surf. 128, e2023JF007098 (2023).
Parker, G. Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. J. Fluid Mech. 89, 127â146 (1978).
Dunne, K. B. & Jerolmack, D. J. What sets river width? Sci. Adv. 6, eabc1505 (2020).
Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. 91, 105â139 (1965).
Howard, A. D. & Knutson, T. R. Sufficient conditions for river meandering: a simulation approach. Water Resour. Res. 20, 1659â1667 (1984).
Furbish, D. J. River-bend curvature and migration: how are they related? Geology 16, 752â755 (1988).
Vanoni, V. A. & Brooks, N. H. Laboratory Studies of the Roughness and Suspended Load of Alluvial Streams (California Institute of Technology Sedimentation Laboratory, 1957).
Kean, J. W. & Smith, J. D. in Riparian Vegetation and Fluvial Geomorphology Vol. 8 (eds Bennett, S. J. & Simon, A.) 237â252 (American Geophysical Union, 2004).
Li, T., Venditti, J. G., Rennie, C. D. & Nelson, P. A. Bed and bank stress partitioning in bedrock rivers. J. Geophys. Res. Earth Surf. 127, e2021JF006360 (2022).
Ferguson, R. I., Hardy, R. J. & Hodge, R. A. Flow resistance and hydraulic geometry in bedrock rivers with multiple roughness length scales. Earth Surf. Process. Landf. 44, 2437â2449 (2019).
Douglas, M. M. & Lamb, M. P. A model for thaw and erosion of permafrost riverbanks. J. Geophys. Res. Earth Surf. 129, e2023JF007452 (2024).
Leprince, S. Monitoring Earth Surface Dynamics With Optical Imagery. PhD thesis, California Institute of Technology (2008).
Altena, B. & Leinss, S. Improved surface displacement estimation through stacking cross-correlation spectra from multi-channel imagery. Sci. Remote Sens. 6, 100070 (2022).
Parker, G. et al. A new framework for modeling the migration of meandering rivers. Earth Surf. Process. Landf. 36, 70â86 (2011).
Ikeda, S., Parker, G. & Sawai, K. Bend theory of river meanders. Part 1. Linear development. J. Fluid Mech. 112, 363â377 (1981).
Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627â1639 (1964).
Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862â866 (2019).
Keller, C. B. Chron.jl: a Bayesian framework for integrated eruption age and age-depth modelling. OSF (Open Science Framework) https://doi.org/10.17605/OSF.IO/TQX3F (2018).
Schoene, B., Eddy, M. P., Keller, C. B. & Samperton, K. M. An evaluation of Deccan Traps eruption rates using geochronologic data. Geochronology 3, 181â198 (2021).
Zhang, T. et al. A Bayesian framework for subsidence modeling in sedimentary basins: a case study of the Tonian Akademikerbreen Group of Svalbard, Norway. Earth Planet. Sci. Lett. 620, 118317 (2023).
Fisk, H. N. Geological Investigation of the Alluvial Valley of the Lower Mississippi River (U.S. Army Corps of Engineers, 1944).
Leopold, L. B. & Wolman, M. G. River meanders. Geol. Soc. Am. Bull. 71, 769â793 (1960).
Hickin, E. J. & Nanson, G. C. The character of channel migration on the Beatton River, northeast British Columbia, Canada. Geol. Soc. Am. Bull. 86, 487â494 (1975).
Dietrich, W. E., Smith, J. D. & Dunne, T. Flow and sediment transport in a sand bedded meander. J. Geol. 87, 305â315 (1979).
Hooke, R. L. B. Distribution of sediment transport and shear stress in a meander bend. J. Geol. 83, 543â565 (1975).
Donovan, M., Belmont, P. & Sylvester, Z. Evaluating the relationship between meander-bend curvature, sediment supply, and migration rates. J. Geophys. Res. Earth Surf. 126, e2020JF006058 (2021).
Bagnold, R. A. Some Aspects of the Shape of River Meanders (US Government Printing Office, 1960).
Eke, E., Parker, G. & Shimizu, Y. Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: morphodynamics of bar push and bank pull. J. Geophys. Res. Earth Surf. 119, 1455â1483 (2014).
Nicoll, T. J. & Hickin, E. J. Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology 116, 37â47 (2010).
Hudson, P. F. & Kesel, R. H. Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology 28, 531â534 (2000).
Finotello, A. et al. Field migration rates of tidal meanders recapitulate fluvial morphodynamics. Proc. Natl Acad. Sci. 115, 1463â1468 (2018).
Hooke, J. River meander behaviour and instability: a framework for analysis. Trans. Inst. Br. Geogr. 28, 238â253 (2003).
Douglas, M. et al. Geomorphic mapping and permafrost occurrence on the Koyukuk River floodplain near Huslia, Alaska (ESS-DIVE dataset) (2023).
Geyman, E., Avouac, J.-P., Douglas, M. & Lamb, M. Resolving the spatial and seasonal pattern of riverbank erosion on the Koyukuk River, Alaska, 2016â2022. Arctic Data Center (2024).
Beltaos, S., Carter, T., Rowsell, R. & DePalma, S. G. Erosion potential of dynamic ice breakup in Lower Athabasca River. Part I: field measurements and initial quantification. Cold Reg. Sci. Technol. 149, 16â28 (2018).
Vandermause, R., Harvey, M., Zevenbergen, L. & Ettema, R. River-ice effects on bank erosion along the middle segment of the Susitna river, Alaska. Cold Reg. Sci. Technol. 185, 103239 (2021).
Milburn, D. & Prowse, T. D. The effect of river-ice break-up on suspended sediment and select trace-element fluxes: paper presented at the 10th Northern Res. Basin Symposium (Svalbard, Norway â 28 Aug./3 Sept. 1994). Hydrol. Res. 27, 69â84 (1996).
Ettema, R. Review of alluvial-channel responses to river ice. J. Cold Reg. Eng. 16, 191â217 (2002).
Costard, F., Gautier, E., Fedorov, A., Konstantinov, P. & Dupeyrat, L. An assessment of the erosion potential of the fluvial thermal process during ice breakups of the Lena River (Siberia). Permafr. Periglac. Process. 25, 162â171 (2014).
Lininger, K., Wohl, E., Rose, J. & Leisz, S. Significant floodplain soil organic carbon storage along a large high-latitude river and its tributaries. Geophys. Res. Lett. 46, 2121â2129 (2019).
Lunardini, V. J., Zisson, J. R. & Yen, Y. C. Experimental Determination of Heat Transfer Coefficients in Water Flowing over a Horizontal Ice Sheet (US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1986).