Thursday, May 15, 2025
No menu items!
HomeNaturePast warm intervals inform the future South Asian summer monsoon

Past warm intervals inform the future South Asian summer monsoon

  • Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Fan, F., Mann, M. E., Lee, S. & Evans, J. L. Future changes in the South Asian summer monsoon: an analysis of the CMIP3 multimodel projections. J. Clim. 25, 3909–3928 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z., Sun, Y., Li, T., Chen, W. & Ding, Y. Projections of south Asian summer monsoon under global warming from 1.5° to 5 °C. J. Clim. 34, 7913–7926 (2021).

    ADS 

    Google Scholar
     

  • Chen, K., Axelsson, J., Zhang, Q., Li, J. & Wang, L. EC-Earth simulations reveal enhanced inter-hemispheric thermal contrast during the last interglacial further intensified the Indian Monsoon. Geophys. Res. Lett. 49, e2021GL094551 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y., He, C., Li, T., Zhang, C. & Gu, X. Distinctive changes of Asian–African summer monsoon in interglacial epochs and global warming scenario. Clim. Dyn. 62, 2129–2145 (2023).

    Article 

    Google Scholar
     

  • Han, Z. & Li, G. The changes in south Asian summer monsoon circulation during the mid-Piacenzian warm period. Clim. Dyn. 62, 5845–5862 (2024).

    MathSciNet 

    Google Scholar
     

  • Wang, B. & LinHo Rainy season of the Asian-Pacific summer monsoon. J. Clim. 15, 386–398 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Boos, W. R. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, G. et al. Thermal controls on the Asian summer monsoon. Sci. Rep. 2, 404 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. & Zhou, T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys. Res. Lett. 42, 9433–9439 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Li, G., Xie, S. P., He, C. & Chen, Z. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Clim. Change 7, 708–712 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Huang, X. et al. South Asian summer monsoon projections constrained by the Interdecadal Pacific Oscillation. Sci. Adv. 6, eaay6546 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajesh, P. V. & Goswami, B. N. A new emergent constraint corrected projections of Indian summer monsoon rainfall. Geophys. Res. Lett. 49, e2021GL096671 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Z., Zhou, T. & Chen, X. Observationally constrained projection of Afro-Asian monsoon precipitation. Nat. Commun. 13, 2552 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. J., Hwang, Y. T. & Lu, J. Robust increase in South Asian monsoon rainfall under warming driven by extratropical clouds and ocean. npj Clim. Atmos. Sci. 7, 318 (2024).

  • Cheng, Y., Wang, L., Chen, X., Zhou, T. & Turner, A. A shorter duration of the Indian summer monsoon in constrained projections. Geophys. Res. Lett. 52, e2024GL112848 (2025).

    Article 

    Google Scholar
     

  • Biasutti, M. et al. Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci. 11, 392–400 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tierney, J. E. et al. Past climates inform our future. Science 370, 680 (2020).

    Article 

    Google Scholar
     

  • Clemens, S. C. et al. Remote and local drivers of pleistocene South Asian summer monsoon precipitation: a test for future predictions. Sci. Adv. 7, eabg3848 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, R. et al. Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat. Commun. 13, 1306 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. V. et al. Higher sea surface temperature in the Indian Ocean during the Last Interglacial weakened the South Asian monsoon. Proc. Natl Acad. Sci. USA 119, e2107720119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, J., Sun, W., Wang, B. & Liu, J. Opposing changes in Indian summer monsoon rainfall variability produced by orbital and anthropogenic forcing. Geophys. Res. Lett. 51, e2024GL109897 (2024).

    Article 

    Google Scholar
     

  • Dahiya, K., Chilukoti, N. & Attada, R. Evaluating the climatic state of Indian summer monsoon during the mid-Pliocene period using CMIP6 model simulations. Dyn. Atmos. Ocean. 106, 101455 (2024).

    Article 

    Google Scholar
     

  • Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4–CMIP6 midHolocene simulations. Clim. Past 16, 1847–1872 (2020).

    Article 

    Google Scholar
     

  • Kaufman, D. S. & Broadman, E. Revisiting the Holocene global temperature conundrum. Nature 614, 425–435 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Haywood, A. M. et al. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design. Clim. Past 12, 663–675 (2016).

    Article 

    Google Scholar
     

  • Otto-Bliesner, B. L. et al. The PMIP4 contribution to CMIP6—Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geosci. Model Dev. 10, 3979–4003 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kageyama, M. et al. The PMIP4 contribution to CMIP6—Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 11, 1033–1057 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Li, X., Jiang, D., Tian, Z. & Yang, Y. Mid-Pliocene global land monsoon from PlioMIP1 simulations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 56–70 (2018).

    Article 

    Google Scholar
     

  • D’Agostino, R., Bader, J., Bordoni, S., Ferreira, D. & Jungclaus, J. Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming. Geophys. Res. Lett. 46, 1591–1601 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Scussolini, P. et al. Agreement between reconstructed and modeled boreal precipitation of the last interglacial. Sci. Adv. 5, eaax7047 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Liu, X. & Herzschuh, U. Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth Sci. Rev. 103, 135–153 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Meehl, G. A. & Arblaster, J. M. Mechanisms for projected future changes in South Asian monsoon precipitation. Clim. Dyn. 21, 659–675 (2003).

    Article 

    Google Scholar
     

  • Sabade, S. S., Kulkarni, A. & Kripalani, R. H. Projected changes in South Asian summer monsoon by multi-model global warming experiments. Theor. Appl. Climatol. 103, 543–565 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Menon, A., Levermann, A., Schewe, J., Lehmann, J. & Frieler, K. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dyn. 4, 287–300 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ma, J. & Yu, J.-Y. Paradox in South Asian summermonsoon circulation change: lower tropospheric strengthening and upper tropospheric weakening. Geophys. Res. Lett. 41, 2934–2940 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Li, X., Ting, M., Li, C. & Henderson, N. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Clim. 28, 4107–4125 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Li, R., Lv, S., Han, B., Gao, Y. & Meng, X. Projections of South Asian summer monsoon precipitation based on 12 CMIP5 models. Int. J. Climatol. 37, 94–108 (2017).

    Article 

    Google Scholar
     

  • Sun, Y., Ding, Y. & Dai, A. Changing links between South Asian summer monsoon circulation and tropospheric land–sea thermal contrasts under a warming scenario. Geophys. Res. Lett. 37, L02704 (2010).

  • Sooraj, K. P., Terray, P. & Mujumdar, M. Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim. Dyn. 45, 233–252 (2015).

    Article 

    Google Scholar
     

  • Wu, Q. Y. et al. Asian summer monsoon responses to the change of land–sea thermodynamic contrast in a warming climate: CMIP6 projections. Adv. Clim. Change Res. 13, 205–217 (2022).

    Article 

    Google Scholar
     

  • Li, T. et al. Distinctive South and East Asian monsoon circulation responses to global warming. Sci. Bull. 67, 762–770 (2022).

    Article 

    Google Scholar
     

  • Luo, H., Wang, Z., He, C., Chen, D. & Yang, S. Future changes in South Asian summer monsoon circulation under global warming: role of the Tibetan Plateau heating. npj Clim. Atmos. Sci. 7, 103 (2024).

    Article 

    Google Scholar
     

  • Chou, C., Neelin, J. D., Chen, C. A. & Tu, J. Y. Evaluating the ‘rich-get-richer’ mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Jin, Q. & Wang, C. A revival of Indian summer monsoon rainfall since 2002. Nat. Clim. Change 7, 587–594 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, B. et al. Middle east warming in spring enhances summer rainfall over Pakistan. Nat. Commun. 14, 7635 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anoop, A., Prasad, S., Krishnan, R., Naumann, R. & Dulski, P. Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the early-mid Holocene. Quat. Int. 313–314, 74–84 (2013).

    Article 

    Google Scholar
     

  • Dortch, J. M. et al. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat. Sci. Rev. 28, 1037–1054 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Gesch, D. B., Verdin, K. L. & Greenlee, S. K. New land surface digital elevation model covers the Earth. Eos 80, 69–70 (1999).

    Article 
    ADS 

    Google Scholar
     

  • deMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chang, Z., Xiao, J., Lü, L. & Yao, H. Abrupt shifts in the Indian monsoon during the Pliocene marked by high-resolution terrestrial records from the Yuanmou Basin in southwest China. J. Asian Earth Sci. 37, 166–175 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Yao, Y.-F. et al. Monsoon versus uplift in Southwestern China–Late Pliocene climate in Yuanmou Basin, Yunnan. PLoS ONE 7, e37760 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, S. et al. Palaeoclimatic estimates for the Late Pliocene based on leaf physiognomy from Western Yunnan, China. Turkish J. Earth Sci. 21, 251–261 (2012).


    Google Scholar
     

  • Gaur, R. & Chopra, S. R. K. Taphonomy, fauna, environment and ecology of Upper Sivaliks (Plio-Pleistocene) near Chandigarh, India. Nature 308, 353–355 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Sanyal, P., Bhattacharya, S. K., Kumar, R., Ghosh, S. K. & Sangode, S. J. Mio–Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 205, 23–41 (2004).

    Article 

    Google Scholar
     

  • Burns, S. J., Fleitmann, D., Matter, A., Neff, U. & Mangini, A. Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 29, 623–626 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cai, Y. et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl Acad. Sci. USA 112, 2954–2959 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magiera, M. et al. Local and regional Indian summer monsoon precipitation dynamics during Termination II and the Last Interglacial. Geophys. Res. Lett. 46, 12454–12463 (2019).

    Article 
    ADS 

    Google Scholar
     

  • An, Z. et al. Glacial–interglacial Indian summer monsoon dynamics. Science 333, 719–723 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, N., Yan, Q. & Wang, H. General characteristics of climate change over China and associated dynamic mechanisms during the Last Interglacial based on PMIP4 simulations. Glob. Planet. Change 208, 103700 (2022).

    Article 

    Google Scholar
     

  • Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 6, 4–10 (2016).

    Article 

    Google Scholar
     

  • Cai, Y. et al. Large variations of oxygen isotopes in precipitation over south-central Tibet during Marine Isotope Stage 5. Geology 38, 243–246 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hodell, D. A. et al. Paleoclimate of Southwestern China for the past 50,000 yr inferred from lake sediment records. Quat. Res. 52, 369–380 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Trivedi, A. in Holocene Climate Change and Environment (eds Kumaran, N. & Damodara, P.) 611–628 (Elsevier, 2022).

  • Dixit, S. & Bera, S. K. Holocene climatic fluctuations from Lower Brahmaputra flood plain of Assam, northeast India. J. Earth Syst. Sci. 121, 135–147 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dixit, S. & Bera, S. K. Pollen-inferred vegetation vis-á-vis climate dynamics since Late Quaternary from western Assam, Northeast India: signal of global climatic events. Quat. Int. 286, 56–68 (2013).

    Article 

    Google Scholar
     

  • Ghosh, R. et al. Late Quaternary climate variability and vegetation response in Ziro Lake Basin, Eastern Himalaya: a multiproxy approach. Quat. Int. 325, 13–29 (2014).

    Article 

    Google Scholar
     

  • Singh, G., Wasson, R. J. & Agrawal, D. P. Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Rev. Palaeobot. Palynol. 64, 351–358 (1990).

    Article 

    Google Scholar
     

  • Enzel, Y. et al. High-resolution holocene environmental changes in the Thar Desert, northwestern India. Science 284, 125–128 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, L. et al. A ~30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet. J. Paleolimnol. 42, 343–358 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, L. et al. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene 18, 831–839 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Phadtare, N. R. Sharp DEcrease in Summer Monsoon Strength 4000–3500 cal yr B.P. in the Central Higher Himalaya of India based on pollen evidence from alpine peat. Quat. Res. 53, 122–129 (2000).

    Article 

    Google Scholar
     

  • Morinaga, H. et al. Oxygen-18 and carbon-13 records for the last 14,000 years from lacustrine carbonates of Siling-Co (Lake) in the Qinghai-Tibetan Plateau. Geophys. Res. Lett. 20, 2909–2912 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Demske, D., Tarasov, P. E., Wünnemann, B. & Riedel, F. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 172–185 (2009).

    Article 

    Google Scholar
     

  • Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, 1–35 (2020).

    Article 

    Google Scholar
     

  • Feng, R., Otto-Bliesner, B. L., Brady, E. C. & Rosenbloom, N. Increased climate response and earth system sensitivity from CCSM4 to CESM2 in Mid-Pliocene simulations. J. Adv. Model. Earth Syst. 12, e2019MS002033 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Otto-Bliesner, B. L. et al. A comparison of the CMIP6 midHolocene and lig127k simulations in CESM2. Paleoceanogr. Paleoclimatol. 35, e2020PA003957 (2020).

  • Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Q. et al. Simulating the mid-Holocene, last interglacial and mid-Pliocene climate with EC-Earth3-LR. Geosci. Model Dev. 14, 1147–1169 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Nazarenko, L. S. et al. Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst. 14, 1–25 (2022).

    Article 

    Google Scholar
     

  • Kelley, M. et al. GISS‐E2.1: configurations and climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hewitt, H. T. et al. Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci. Model Dev. 4, 223–253 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Williams, C. J. R. et al. Simulation of the mid-Pliocene Warm Period using HadGEM3: experimental design and results from model-model and model–data comparison. Clim. Past 17, 2139–2163 (2021).

    Article 

    Google Scholar
     

  • Williams, C. et al. The UK contribution to CMIP6/PMIP4: mid-Holocene and Last Interglacial experiments with HadGEM3, and comparison to the pre-industrial era and proxy data. Clim. Past 16, 1429–1450 (2020).

    Article 

    Google Scholar
     

  • Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, 1–52 (2020).

    Article 

    Google Scholar
     

  • Guo, C. et al. Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM). Geosci. Model Dev. 12, 343–362 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, X., Guo, C., Zhang, Z., Helge Otterä, O. & Zhang, R. PlioMIP2 simulations with NorESM-L and NorESM1-F. Clim. Past 16, 183–197 (2020).

    Article 

    Google Scholar
     

  • Bartlein, P. J. & Shafer, S. L. Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis. Geosci. Model Dev. 12, 3889–3913 (2019).

    Article 
    ADS 

    Google Scholar
     

  • He, L., Zhou, T. & Chen, X. South Asian summer rainfall from CMIP3 to CMIP6 models: biases and improvements. Clim. Dyn. 61, 1049–1061 (2022).

    Article 

    Google Scholar
     

  • Zhang, T., Jiang, X., Yang, S., Chen, J. & Li, Z. A predictable prospect of the South Asian summer monsoon. Nat. Commun. 13, 7080 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seager, R. & Henderson, N. Diagnostic computation of moisture budgets in the ERA-interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Clim. 26, 7876–7901 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chou, C., Chen, C. A., Tan, P. H. & Chen, K. T. Mechanisms for global warming impacts on precipitation frequency and intensity. J. Clim. 25, 3291–3306 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Huang, P., Xie, S., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 6, 357–361 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, P. & Xie, S. P. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci. 8, 922–926 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Neelin, J. D. & Held, I. M. Modeling tropical convergence based on the moist static energy budget. Mon. Weather Rev. 115, 3–12 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Wu, B., Zhou, T. & Li, T. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Clim. 30, 9621–9635 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Brient, F. Reducing uncertainties in climate projections with emergent constraints: concepts, examples and prospects. Adv. Atmos. Sci. 37, 1–15 (2020).

    Article 

    Google Scholar
     

  • Gent, P. R. et al. The Community Climate System Model version 4. J. Clim. 24, 4973–4991 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Wang, B., Bao, Q., Hoskins, B., Wu, G. & Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 35, 1–5 (2008).

    Article 

    Google Scholar
     

  • Khodri, M. et al. Tropical explosive volcanic eruptions can trigger El Ninõ by cooling tropical Africa. Nat. Commun. 8, 778 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 
    ADS 

    Google Scholar
     

  • He, J., Soden, B. J. & Kirtman, B. The robustness of the atmospheric circulation and precipitation response to future anthropogenic surface warming. Geophys. Res. Lett. 41, 2614–2622 (2014).

    Article 
    ADS 

    Google Scholar
     

  • He, J. & Soden, B. J. Anthropogenic weakening of the tropical circulation: the relative roles of direct CO2 forcing and sea surface temperature change. J. Clim. 28, 8728–8742 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Shaw, T. A. & Voigt, A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci. 8, 560–566 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, X. & Ting, M. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change. Clim. Dyn. 49, 2863–2880 (2017).

    Article 

    Google Scholar
     

  • Watanabe, M. & Kimoto, M. Atmosphere–ocean thermal coupling in the North Atlantic: a positive feedback. Q. J. R. Meteorol. Soc. 126, 3343–3369 (2000).

    ADS 

    Google Scholar
     

  • He, L., Zhou, T. & Guo, Z. Data and code for “Past warm intervals inform the future South Asian summer monsoon”. Zenodo https://doi.org/10.5281/zenodo.15001239 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments