Friday, November 15, 2024
No menu items!
HomeNaturePast foraminiferal acclimatization capacity is limited during future warming

Past foraminiferal acclimatization capacity is limited during future warming

  • Cooley, S. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) 379–550 (Cambridge Univ. Press, 2022).

  • Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. 117, 12891–12896 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S. & Yvon-Durocher, G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 19, 133–142 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Irwin, A. J., Finkel, Z. V., Müller-Karger, F. E. & Troccoli Ghinaglia, L. Phytoplankton adapt to changing ocean environments. Proc. Natl Acad. Sci. USA 112, 5762–5766 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y. H. et al. Epigenetic plasticity enables copepods to cope with ocean acidification. Nat. Clim. Change 12, 918–927 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Chivers, W. J., Walne, A. W. & Hays, G. C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 8, 14434 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neukermans, G. et al. Quantitative and mechanistic understanding of the open ocean carbonate pump – perspectives for remote sensing and autonomous in situ observation. Earth Sci. Rev. 239, 104359 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial–interglacial climate change. Proc. Natl Acad. Sci. USA 118, e2017105118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterson, A. M., Edgar, K. M., Schmidt, D. N. & Valdes, P. J. Quantifying the stability of planktic foraminiferal physical niches between the Holocene and Last Glacial Maximum: niche stability of planktic foraminifera. Paleoceanography 32, 74–89 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Davis, C. V., Wishner, K., Renema, W. & Hull, P. M. Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations. Biogeosciences 18, 977–992 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Vanadzina, K. & Schmidt, D. N. Developmental change during a speciation event: evidence from planktic foraminifera. Paleobiology 48, 120–136 (2022).

    Article 

    Google Scholar
     

  • Ward, B. A. et al. EcoGEnIE 1.0: plankton ecology in the cGEnIE Earth system model. Geosci. Model Dev. 11, 4241–4267 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ying, R., Monteiro, F. M., Wilson, J. D. & Schmidt, D. N. ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model. Geosci. Model Dev. 16, 813–832 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lombard, F., Labeyrie, L., Michel, E., Spero, H. J. & Lea, D. W. Modelling the temperature dependent growth rates of planktic foraminifera. Mar. Micropaleontol. 70, 1–7 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R. & Thierstein, H. R. Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation. Mar. Micropaleontol. 50, 319–338 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Darling, K. F. et al. Genetic diversity and ecology of the planktonic foraminifers Globigerina bulloides, Turborotalita quinqueloba and Neogloboquadrina pachyderma off the Oman margin during the late SW monsoon. Mar. Micropaleontol. 137, 64–77 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Steinke, S., Yu, P.-S., Kucera, M. & Chen, M.-T. No-analog planktonic foraminiferal faunas in the glacial southern South China Sea: implications for the magnitude of glacial cooling in the western Pacific warm pool. Mar. Micropaleontol. 66, 71–90 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Möller, V. et al. in Climate Change 2022: Impacts, Adaptation And Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) 2897–2930 (Cambridge Univ. Press, 2022).

  • Hattich, G. S. I. et al. Temperature optima of a natural diatom population increases as global warming proceeds. Nat. Clim. Change 14, 518–525 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Sexton, P. F. & Norris, R. D. Dispersal and biogeography of marine plankton: long-distance dispersal of the foraminifer Truncorotalia truncatulinoides. Geology 36, 899–902 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kucera, M. & Schonfeld, J. in Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M. et al.) 409–425 (Geological Society of London on behalf of The Micropalaeontological Society, 2007).

  • Vargas, C., de, Renaud, S., Hilbrecht, H. & Pawlowski, J. Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphologic, and environmental evidence. Paleobiology 27, 104–125 (2001).

    Article 

    Google Scholar
     

  • Morard, R. et al. The global genetic diversity of planktonic foraminifera reveals the structure of cryptic speciation in plankton. Biol. Rev. 99, 1218–1241 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaabane, S. et al. Modern planktonic Foraminifera: migrating is not enough. Preprint at https://doi.org/10.21203/rs.3.rs-3485983/v1 (2023).

  • Grigoratou, M., Monteiro, F. M., Wilson, J. D., Ridgwell, A. & Schmidt, D. N. Exploring the impact of climate change on the global distribution of non‐spinose planktonic foraminifera using a trait‐based ecosystem model. Glob. Change Biol. 28, 1063–1076 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Greco, M., Werner, K., Zamelczyk, K., Rasmussen, T. L. & Kucera, M. Decadal trend of plankton community change and habitat shoaling in the Arctic gateway recorded by planktonic foraminifera. Glob. Change Biol. 28, 1798–1808 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pinkerton, M. H. et al. Zooplankton in the Southern Ocean from the continuous plankton recorder: distributions and long-term change. Deep Sea Res. Part I 162, 103303 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Edgar, K. M. et al. Symbiont ‘bleaching’ in planktic foraminifera during the Middle Eocene Climatic Optimum. Geology 41, 15–18 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyd, P. W. Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nat. Clim. Change 9, 148–152 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grigoratou, M. et al. A trait-based modelling approach to planktonic foraminifera ecology. Biogeosciences 16, 1469–1492 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Galbraith, E. D. & Martiny, A. C. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proc. Natl Acad. Sci. USA 112, 8199–8204 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LeKieffre, C. et al. Assimilation, translocation, and utilization of carbon between photosynthetic symbiotic dinoflagellates and their planktic foraminifera host. Mar. Biol. 165, 104 (2018).

    Article 

    Google Scholar
     

  • Meilland, J., Howa, H., Lo Monaco, C. & Schiebel, R. Individual planktic foraminifer protein-biomass affected by trophic conditions in the Southwest Indian Ocean, 30°S–60°S. Mar. Micropaleontol. 124, 63–74 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gray, W. R. et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean. Nature Geosci 11, 340–344 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kawahata, H. et al. Perspective on the response of marine calcifiers to global warming and ocean acidification—behavior of corals and foraminifera in a high CO2 world “hot house”. Prog. Earth Planet. Sci. 6, 5 (2019).

    Article 

    Google Scholar
     

  • Deutsch, C., Penn, J. L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 585, 557–562 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sauterey, B. et al. Phytoplankton adaptive resilience to climate change collapses in case of extreme events—a modeling study. Ecol. Model. 483, 110437 (2023).

    Article 

    Google Scholar
     

  • Gunderson, A. R. & Stillman, J. H. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282, 20150401 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan, X., Tans, P. & Thoning, K. W. Trends in globally-averaged CO2 determined from NOAA Global Monitoring Laboratory measurements. https://doi.org/10.15138/9N0H-ZH07 (2023).

  • Pohl, A. et al. Continental configuration controls ocean oxygenation during the Phanerozoic. Nature 608, 523–527 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, N. R. & Marsh, R. Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model. Clim. Dyn. 24, 415–433 (2005).

    Article 

    Google Scholar
     

  • Marsh, R., Müller, S. A., Yool, A. & Edwards, N. R. Incorporation of the C-GOLDSTEIN efficient climate model into the GENIE framework: ‘eb_go_gs’ configurations of GENIE. Geosci. Model Dev. 4, 957–992 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Ridgwell, A. et al. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences 4, 87–104 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Davies-Barnard, T., Ridgwell, A., Singarayer, J. & Valdes, P. Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Clim. Past 13, 1381–1401 (2017).

    Article 

    Google Scholar
     

  • Albani, S. et al. Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean. Geophys. Res. Lett. 43, 3944–3954 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morée, A. L. & Schwinger, J. A Last Glacial Maximum forcing dataset for ocean modelling. Earth Syst. Sci. Data 12, 2971–2985 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kageyama, M. et al. The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geosci. Model Dev. 10, 4035–4055 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ödalen, M. Model Analysis of Ocean Carbon Storage and Transport Across Climate States. PhD thesis, Stockholm Univ. (2019).

  • Bouttes, N., Paillard, D. & Roche, D. M. Impact of brine-induced stratification on the glacial carbon cycle. Clim. Past 6, 575–589 (2010).

    Article 

    Google Scholar
     

  • Peterson, C. D., Lisiecki, L. E. & Stern, J. V. Deglacial whole-ocean δ13C change estimated from 480 benthic foraminiferal records. Paleoceanography 29, 549–563 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Muglia, J., Skinner, L. C. & Schmittner, A. Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett. 496, 47–56 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kageyama, M. et al. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Clim. Past 17, 1065–1089 (2021).

    Article 

    Google Scholar
     

  • Annan, J. D., Hargreaves, J. C. & Mauritsen, T. A new global surface temperature reconstruction for the Last Glacial Maximum. Clim. Past 18, 1883–1896 (2022).

    Article 

    Google Scholar
     

  • Jonkers, L. & Kučera, M. Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies. Clim. Past 13, 573–586 (2017).

    Article 

    Google Scholar
     

  • Cao, L. et al. The role of ocean transport in the uptake of anthropogenic CO2. Biogeosciences 6, 375–390 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mahowald, N. M. et al. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res. 111, D10202 (2006).

    ADS 

    Google Scholar
     

  • Morice, C. P. et al. An updated assessment of near‐surface temperature change from 1850: the HadCRUT5 data set. J. Geophys. Res. Atmos. 126, e2019JD032361 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Michaels, A. F., Caron, D. A., Swanberg, N. R., Howse, F. A. & Michaels, C. M. Planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda: abundance, biomass and vertical flux. J. Plankton Res. 17, 131–163 (1995).

    Article 

    Google Scholar
     

  • Fraile, I. et al. Modeling the seasonal distribution of planktonic foraminifera during the Last Glacial Maximum. Paleoceanography 24, PA2216 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Siccha, M. & Kucera, M. ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples. Sci. Data 4, 170109 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C. & Weinelt, M. Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat. Sci. Rev. 24, 813–819 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Brummer, G.-J. A. & Kučera, M. Taxonomic review of living planktonic foraminifera. J. Micropalaeontol. 41, 29–74 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Takagi, H. et al. Characterizing photosymbiosis in modern planktonic foraminifera. Biogeosciences 16, 3377–3396 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer Berlin, 2017).

  • Huber, B. T. et al. Pforams@microtax: A new online taxonomic database for planktonic foraminifera. Micropaleontology 62, 429–438 (2016).

    Article 

    Google Scholar
     

  • Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).


    Google Scholar
     

  • Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rebotim, A. et al. Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic. Biogeosciences 14, 827–859 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Muggeo, V. M. R., Torretta, F., Eilers, P., Sciandra, M. & Attanasio, M. Multiple smoothing parameters selection in additive regression quantiles. Stat. Model. 21, 428–448 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).

    Article 
    ADS 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2023).

  • Ying, R. ruiying-ocean/lgm_foram_census: Foraminifera abundance data in the LGM/PI. Zenodo https://zenodo.org/doi/10.5281/zenodo.8189768 (2024).

  • Ying, R., Monteiro, F. M., Wilson, J. D. & Schmidt, D. N. Modelled planktic formainifera from LGM to future (ForamEcoGENIE). Zenodo https://zenodo.org/doi/10.5281/zenodo.8189647 (2024).

  • Ying, R. ruiying-ocean/quanternary_foram_niche: Foraminifera optimal niche reanalysis based on Antell et al. (2021) data. Zenodo https://zenodo.org/doi/10.5281/zenodo.8189772 (2024).

  • Ying, R. cgeniepy: a Python package for analysing cGENIE Earth System Model output. Preprint at https://doi.org/10.21203/rs.3.rs-3967633/v1 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments