Thursday, May 1, 2025
No menu items!
HomeNaturePacific hotspots reveal a Louisville–Ontong Java Nui tectonic link

Pacific hotspots reveal a Louisville–Ontong Java Nui tectonic link

  • Chandler, M. T., Wessel, P. & Sager, W. W. Analysis of Ontong Java Plateau palaeolatitudes: evidence for large-scale rotation since 123 Ma? Geophys. J. Int. 194, 18–29 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Duncan, R. A. & Clague, D. A. in The Ocean Basins and Margins: Volume 7A The Pacific Ocean (eds Nairn, A. E. M. et al.) 89–121 (Springer, 1985).

  • Koppers, A. A. P. et al. Mantle plumes and their role in Earth processes. Nat. Rev. Earth Environ. 2, 382–401 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Koppers, A. A. P. & Sager, W. W. in Developments in Marine Geology Vol. 7 (eds Stein, R. et al.) 553–597 (Elsevier, 2014).

  • Tarduno, J. A., Bunge, H.-P., Sleep, N. & Hansen, U. The bent Hawaiian–Emperor hotspot track: inheriting the mantle wind. Science 324, 50–53 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res. Solid Earth 117, B09101 (2012).

  • Wessel, P. & Kroenke, L. W. Observations of geometry and ages constrain relative motion of Hawaii and Louisville plumes. Earth Planet. Sci. Lett. 284, 467–472 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koppers, A. A. P., Staudigel, H., Phipps Morgan, J. & Duncan, R. A. Nonlinear 40Ar/39Ar age systematics along the Gilbert Ridge and Tokelau Seamount Trail and the timing of the Hawaii–Emperor bend. Geochem. Geophys. Geosyst. 8, Q06L13 (2007).

    Article 

    Google Scholar
     

  • Konrad, K. et al. On the relative motions of long-lived Pacific mantle plumes. Nat. Commun. 9, 854 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, M. G. et al. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature 514, 355–358 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jackson, M. G. et al. Samoan hot spot track on a “hot spot highway”: implications for mantle plumes and a deep Samoan mantle source. Geochem. Geophys. Geosyst. 11, Q12009 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Konter, J. G. & Jackson, M. G. Large volumes of rejuvenated volcanism in Samoa: evidence supporting a tectonic influence on late-stage volcanism. Geochem. Geophys. Geosyst. 13, Q0AM04 (2012).

    Article 

    Google Scholar
     

  • Koppers, A. A. P. et al. Limited latitudinal mantle plume motion for the Louisville hotspot. Nat. Geosci. 5, 911–917 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Finlayson, V. A. et al. Sr–Pb–Nd–Hf isotopes and 40Ar/39Ar ages reveal a Hawaii–Emperor-style bend in the Rurutu hotspot. Earth Planet. Sci. Lett. 500, 168–179 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Konter, J. G. & Becker, T. W. Shallow lithospheric contribution to mantle plumes revealed by integrating seismic and geochemical data. Geochem. Geophys. Geosyst. 13, Q02004 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Koppers, A. A. P., Phipps Morgan, J., Morgan, J. W. & Staudigel, H. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet. Sci. Lett. 16, 237–252 (2001).

  • Campbell, I. H., Griffiths, R. W. & Hill, R. I. Melting in an Archaean mantle plume: heads it’s basalts, tails it’s komatiites. Nature 339, 697–699 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Taylor, B. The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi. Earth Planet. Sci. Lett. 241, 372–380 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mahoney, J. J. & Spencer, K. J. Isotopic evidence for the origin of the Manihiki and Ontong Java oceanic plateaus. Earth Planet. Sci. Lett. 104, 196–210 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Golowin, R. et al. Geochemistry of deep Manihiki Plateau crust: implications for compositional diversity of large igneous provinces in the Western Pacific and their genetic link. Chem. Geol. 493, 553–566 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Henderson, L. & Gordon, R. G. Oceanic plateaus and the motion of the Pacific Plate with respect to the hotspots. EOS Trans. Am. Geophys. Union 62, 1028 (1981).


    Google Scholar
     

  • Mahoney, J. J., Storey, M., Duncan, R. A., Spencer, K. J. & Pringle, M. Geochemistry and age of the Ontong Java Plateau. Am. Geophys. Union Geophys. Monogr. Ser. 77, 233–261 (1993).

    ADS 

    Google Scholar
     

  • Antretter, M., Riisager, P., Hall, S., Zhao, X. & Steinberger, B. Modelled palaeolatitudes for the Louisville hot spot and the Ontong Java Plateau. Geol. Soc. Lond. Spec. Publ. 229, 21–30 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Kroenke, L. W., Wessel, P. & Sterling, A. Motion of the Ontong Java Plateau in the hot-spot frame of reference: 122 Ma-present. Geol. Soc. Lond. Spec. Publ. 229, 9–20 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Neal, C., Mahoney, J., Kroenke, L., Duncan, R. & Petterson, M. in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.) 183–216 (American Geophysical Union, 1997).

  • Vanderkluysen, L. et al. Louisville seamount chain: petrogenetic processes and geochemical evolution of the mantle source. Geochem. Geophys. Geosyst. 15, 2380–2400 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tejada, M. L. G. et al. New evidence for the Ontong Java Nui hypothesis. Sci. Rep. 13, 8486 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koppers, A. A. P., Staudigel, H., Pringle, M. S. & Wijbrans, J. R. Short-lived and discontinuous intraplate volcanism in the South Pacific: hot spots or extensional volcanism?. Geochem. Geophys. Geosyst. 4, 1089 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Sager, W. W. et al. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies. Nat. Geosci. 12, 661–666 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kopp, H. et al. Fossil hot spot-ridge interaction in the Musicians Seamount Province: geophysical investigations of hot spot volcanism at volcanic elongated ridges. J. Geophys. Res. Solid Earth 108, 2160 (2003).

  • O’Connor, J. M. et al. Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian–Emperor bend. Nat. Geosci. 8, 393–397 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Fletcher, M., Wyman, D. A. & Zahirovic, S. Mantle plumes, triple junctions and transforms: a reinterpretation of Pacific Cretaceous–Tertiary LIPs and the Laramide connection. Geosci. Front. 11, 1133–1144 (2020).

    Article 

    Google Scholar
     

  • Davis, A. S., Gray, L. B., Clague, D. A. & Hein, J. R. The Line Islands revisited: new 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension. Geochem. Geophys. Geosyst. 3, 1–28 (2002).

    Article 

    Google Scholar
     

  • Sager, W. W. What built Shatsky Rise, a mantle plume or ridge tectonics? Geol. Soc. Am. Spec. Pap. 388, 15 (2005).

  • Heaton, D. E. & Koppers, A. A. P. High-resolution 40Ar/39Ar geochronology of the Louisville seamounts IODP expedition 330 drill sites: implications for the duration of hot spot-related volcanism and age progressions. Geochem. Geophys. Geosyst. 20, 4073–4102 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bono, R. K., Tarduno, J. A. & Bunge, H.-P. Hotspot motion caused the Hawaiian–Emperor bend and LLSVPs are not fixed. Nat. Commun. 10, 3370 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cande, S. C., Raymond, C. A., Stock, J. & Haxby, W. F. Geophysics of the Pitman Fracture Zone and Pacific–Antarctic plate motions during the Cenozoic. Sci. New Ser. 270, 947–953 (1995).

    CAS 

    Google Scholar
     

  • Wessel, P. & Kroenke, L. W. Pacific absolute plate motion since 145 Ma: an assessment of the fixed hot spot hypothesis. J. Geophys. Res. 113, B06101 (2008).

  • O’Connor, J. M. et al. Constraints on past plate and mantle motion from new ages for the Hawaiian–Emperor seamount chain. Geochem. Geophys. Geosyst. 14, 4564–4584 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Staudigel, H., Koppers, A. A. P., Plank, T. A. & Hanan, B. B. Seamounts in the subduction factory. Oceanography 23, 176–181 (2010).

    Article 

    Google Scholar
     

  • Janney, P. E. & Castillo, P. R. Isotope geochemistry of the Darwin Rise seamounts and the nature of long-term mantle dynamics beneath the south central Pacific. J. Geophys. Res. Solid Earth 104, 10571–10589 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Jackson, M. G. et al. The return of subducted continental crust in Samoan lavas. Nature 448, 684–687 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Konter, J. G. et al. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth Planet. Sci. Lett. 275, 285–295 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hart, S. R. et al. Genesis of the Western Samoa seamount province: age, geochemical fingerprint and tectonics. Earth Planet. Sci. Lett. 227, 37–56 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Price, A. A. et al. Distinguishing volcanic contributions to the overlapping Samoan and Cook–Austral hotspot tracks. J. Petrol. 63, egac032 (2022).

    Article 

    Google Scholar
     

  • Reinhard, A. A. et al. “Petit spot” rejuvenated volcanism superimposed on plume-derived Samoan shield volcanoes: evidence from a 645-m drill core from Tutuila Island, American Samoa. Geochem. Geophys. Geosyst. 20, 1485–1507 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Staudigel, H. et al. The longevity of the South Pacific isotopic and thermal anomaly. Earth Planet. Sci. Lett. 102, 24–44 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Stern, R. J., Fouch, M. J. & Klemperer, S. L. in Inside the Subduction Factory (ed. Eiler, S.) 175–222 (American Geophysical Union, 2004).

  • DIGIS Team ‘2023-12-PVFZCE_IZU-BONIN-MARIANA_ARC.csv’. GEOROC compilation: convergent margins. GEOROC https://doi.org/10.25625/PVFZCE/6MYFA2 (2023).

  • Torsvik, T. H. et al. Pacific–Panthalassic reconstructions: overview, errata and the way forward. Geochem. Geophys. Geosyst. 20, 3659–3689 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chandler, M. T. et al. Reconstructing Ontong Java Nui: implications for Pacific absolute plate motion, hotspot drift and true polar wander. Earth Planet. Sci. Lett. 331–332, 140–151 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Davidson, P. C., Koppers, A. A. P., Sano, T. & Hanyu, T. A younger and protracted emplacement of the Ontong Java Plateau. Science 380, 1185–1188 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, X. et al. Co-occurrence of HIMU and EM1 components in a single Magellan seamount: implications for the formation of West Pacific Seamount Province. J. Petrol. 63, egac022 (2022).

    Article 

    Google Scholar
     

  • Harrison, L. N. & Weis, D. The size and emergence of geochemical heterogeneities in the Hawaiian mantle plume constrained by Sr–Nd–Hf isotopic variation over 47 million years. Geochem. Geophys. Geosyst. 19, 2823–2842 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harrison, L. N., Weis, D. & Garcia, M. O. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics. Earth Planet. Sci. Lett. 463, 298–309 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harrison, L. N., Weis, D. & Garcia, M. O. The multiple depleted mantle components in the Hawaiian–Emperor chain. Chem. Geol. 532, 119324 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bonneville, A., Dosso, L. & Hildenbrand, A. Temporal evolution and geochemical variability of the South Pacific superplume activity. Earth Planet. Sci. Lett. 244, 251–269 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Buff, L. et al. “Missing links” for the long-lived Macdonald and Arago hotspots, South Pacific Ocean. Geology 49, 541–544 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hémond, C., Devey, C. W. & Chauvel, C. Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): element and isotope (Sr, Nd, Pb, Th) geochemistry. Chem. Geol. 115, 7–45 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, Q. et al. in Seamounts, Islands, and Atolls (eds Keating, B. H. et al) 283–296 (American Geophysical Union, 1987).

  • Beier, C., Vanderkluysen, L., Regelous, M., Mahoney, J. J. & Garbe-Schönberg, D. Lithospheric control on geochemical composition along the Louisville Seamount Chain. Geochem. Geophys. Geosyst. 12, Q0AM01 (2011).

    Article 

    Google Scholar
     

  • DIGIS Team GEOROC compilation: ocean island groups. GEOROC https://doi.org/10.25625/WFJZKY (2023).

  • Tejada, M. L. G., Mahoney, J. J., Duncan, R. A. & Hawkins, M. P. Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of Ontong Java Plateau. J. Petrol. 37, 361–394 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tejada, M. L. G. et al. Pin-pricking the elephant: evidence on the origin of the Ontong Java Plateau from Pb–Sr–Hf–Nd isotopic characteristics of ODP leg 192 basalts. Geol. Soc. Lond. Spec. Publ. 229, 133–150 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tejada, M. L. G., Mahoney, J. J., Neal, C. R., Duncan, R. A. & Petterson, M. G. Basement geochemistry and geochronology of Central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau. J. Petrol. 43, 449–484 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoernle, K. et al. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus. Geochim. Cosmochim. Acta 74, 7196–7219 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Timm, C. et al. Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: new evidence for a plume origin. Earth Planet. Sci. Lett. 304, 135–146 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ingle, S. et al. Depleted mantle wedge and sediment fingerprint in unusual basalts from the Manihiki Plateau, central Pacific Ocean. Geology 35, 595 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Golowin, R. et al. Boninite-like intraplate magmas from Manihiki Plateau require ultra-depleted and enriched source components. Nat. Commun. 8, 14322 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hauri, E. H., Whitehead, J. A. & Hart, S. R. Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J. Geophys. Res. 99, 24275–24300 (1994).

  • Class, C. & Lehnert, K. PetDB expert MORB (mid-ocean ridge basalt) compilation https://search.earthchem.org/ (2012).

  • Ruellan, E., Delteil, J., Wright, I. & Matsumoto, T. From rifting to active spreading in the Lau Basin–Havre Trough backarc system (SW Pacific): locking/unlocking induced by seamount chain subduction. Geochem. Geophys. Geosyst. 4, 8909 (2003).

  • Torsvik, T. H., Steinberger, B., Gurnis, M. & Gaina, C. Plate tectonics and net lithosphere rotation over the past 150My. Earth Planet. Sci. Lett. 291, 106–112 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jochum, K. P. et al. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 29, 333–338 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Konter, J. G. & Storm, L. P. High precision 87Sr/86Sr measurements by MC-ICP-MS, simultaneously solving for Kr interferences and mass-based fractionation. Chem. Geol. 385, 26–34 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Todt, W., Cliff, R., Hanser, A. & Hofmann, A. Evaluation of a 202Pb–205Pb double spike for high-precision lead isotope analysis. Geophys. Monogr. Ser. 95, 429–437 (1996).

    ADS 

    Google Scholar
     

  • Münker, C., Weyer, S., Scherer, E. & Mezger, K. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosyst. 2, 1064 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Béguelin, P., Bizimis, M., Beier, C. & Turner, S. Rift–plume interaction reveals multiple generations of recycled oceanic crust in Azores lavas. Geochim. Cosmochim. Acta 218, 132–152 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Blichert-Toft, J. & Albarède, F. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet. Sci. Lett. 148, 243–258 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koppers, A. A. P. ArArCALC—software for 40Ar/39Ar age calculations. Comput. Geosci. 28, 605–619 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Min, K., Mundil, R., Renne, P. R. & Ludwig, K. R. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim. Cosmochim. Acta 64, 73–98 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kuiper, K. F. et al. Synchronizing rock clocks of Earth history. Science 320, 500–504 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J.-Y. et al. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70, 4507–4512 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schaen, A. J. et al. Interpreting and reporting 40Ar/39Ar geochronologic data. GSA Bull. 133, 461–487 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Allègre, C. J., Hamelin, B., Provost, A. & Dupré, B. Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth Planet. Sci. Lett. 81, 319–337 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

  • Hanan, B. B. & Graham, D. W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Sci. New Ser. 272, 991–995 (1996).

    CAS 

    Google Scholar
     

  • Smith, W. H. F., Staudigel, H., Watts, A. B. & Pringle, M. S. The Magellan seamounts: Early Cretaceous record of the South Pacific isotopic and thermal anomaly. J. Geophys. Res. Solid Earth 94, 10501–10523 (1989).

    Article 

    Google Scholar
     

  • Hauff, F., Hoernle, K. & Schmidt, A. Sr–Nd–Pb composition of Mesozoic Pacific oceanic crust (site 1149 and 801, ODP leg 185): implications for alteration of ocean crust and the input into the Izu–Bonin–Mariana subduction system. Geochem. Geophys. Geosyst. 4, 8913 (2003).

  • Geldmacher, J. et al. The effects of submarine alteration and phosphatization on igneous rocks: implications for Sr-, Nd-, Pb-isotope studies. Chem. Geol. 631, 121509 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kingsley, R. H., Blichert-Toft, J., Fontignie, D. & Schilling, J.-G. Hafnium, neodymium, and strontium isotope and parent–daughter element systematics in basalts from the plume–ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochem. Geophys. Geosyst. 8, Q04005 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Regelous, M. Geochemistry of lavas from the Emperor aeamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol. 44, 113–140 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nebel, O. et al. Coupled Hf–Nd–Pb isotope co-variations of HIMU oceanic island basalts from Mangaia, Cook–Austral islands, suggest an Archean source component in the mantle transition zone. Geochim. Cosmochim. Acta 112, 87–101 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, S.-S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313–345 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Hart, S. R. & Blusztajn, J. Age and geochemistry of the mafic sills, ODP site 1276, Newfoundland margin. Chem. Geol. 235, 222–237 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morgan, W. J. Deep mantle convection plumes and plate motions. AAPG Bull. 56, 203–213 (1972).

  • Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor–Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Duncan, R. A. & Keller, R. A. Radiometric ages for basement rocks from the Emperor seamounts, ODP leg 197. Geochem. Geophys. Geosyst. 5, Q08L03 (2004).

  • Koppers, A. A. P., Duncan, R. A. & Steinberger, B. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochem. Geophys. Geosyst. 5, Q06L02 (2004).

  • Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hochmuth, K., Gohl, K. & Uenzelmann-Neben, G. Playing jigsaw with large igneous provinces—a plate tectonic reconstruction of Ontong Java Nui, West Pacific. Geochem. Geophys. Geosyst. 16, 3789–3807 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, G.-L. & Li, C. Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough. Sci. Rep. 6, 37561 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wobbe, F., Gohl, K., Chambord, A. & Sutherland, R. Structure and breakup history of the rifted margin of West Antarctica in relation to Cretaceous separation from Zealandia and Bellingshausen plate motion. Geochem. Geophys. Geosyst. 13, Q04W12 (2012).

  • Mortimer, N. et al. Late Cretaceous oceanic plate reorganization and the breakup of Zealandia and Gondwana. Gondwana Res. 65, 31–42 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Davidson, P. C., Koppers, Aa. P. & Konter, J. G. Rapid formation of the Ellice and Osbourn basins and Ontong Java Nui breakup kinematics. Geochem. Geophys. Geosyst. 24, e2022GC010592 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Benyshek, E. K., Wessel, P. & Taylor, B. Tectonic reconstruction of the Ellice Basin. Tectonics 38, 3854–3865 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Konter, J. G. et al. Geochemical stages at Jasper Seamount and the origin of intraplate volcanoes. Geochem. Geophys. Geosyst. 10, Q02001 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Koppers, A. A. P. Asynchronous bends in Pacific seamount trails: a case for extensional volcanism? Science 307, 904–907 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koppers, A. A. P. et al. Samoa reinstated as a primary hotspot trail. Geology 36, 435 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koppers, A. A. P., Staudigel, H., Wijbrans, J. R. & Pringle, M. S. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific Plate motion. Earth Planet. Sci. Lett. 163, 53–68 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koppers, A. A. P. Mantle plumes persevere. Nat. Geosci. 4, 816–817 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koppers, A. A. P. et al. Age systematics of two young en echelon Samoan volcanic trails. Geochem. Geophys. Geosyst. 12, Q07025 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Coffin, M. F. et al. Large igneous provinces and scientific ocean drilling: status quo and a look ahead. Oceanography 19, 150–160 (2006).

    Article 

    Google Scholar
     

  • Regelous, M. et al. Mantle dynamics and mantle melting beneath Niuafo’ou Island and the northern Lau back-arc basin. Contrib. Mineral. Petrol. 156, 103–118 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments