Chandler, M. T., Wessel, P. & Sager, W. W. Analysis of Ontong Java Plateau palaeolatitudes: evidence for large-scale rotation since 123 Ma? Geophys. J. Int. 194, 18–29 (2013).
Duncan, R. A. & Clague, D. A. in The Ocean Basins and Margins: Volume 7A The Pacific Ocean (eds Nairn, A. E. M. et al.) 89–121 (Springer, 1985).
Koppers, A. A. P. et al. Mantle plumes and their role in Earth processes. Nat. Rev. Earth Environ. 2, 382–401 (2021).
Koppers, A. A. P. & Sager, W. W. in Developments in Marine Geology Vol. 7 (eds Stein, R. et al.) 553–597 (Elsevier, 2014).
Tarduno, J. A., Bunge, H.-P., Sleep, N. & Hansen, U. The bent Hawaiian–Emperor hotspot track: inheriting the mantle wind. Science 324, 50–53 (2009).
Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res. Solid Earth 117, B09101 (2012).
Wessel, P. & Kroenke, L. W. Observations of geometry and ages constrain relative motion of Hawaii and Louisville plumes. Earth Planet. Sci. Lett. 284, 467–472 (2009).
Koppers, A. A. P., Staudigel, H., Phipps Morgan, J. & Duncan, R. A. Nonlinear 40Ar/39Ar age systematics along the Gilbert Ridge and Tokelau Seamount Trail and the timing of the Hawaii–Emperor bend. Geochem. Geophys. Geosyst. 8, Q06L13 (2007).
Konrad, K. et al. On the relative motions of long-lived Pacific mantle plumes. Nat. Commun. 9, 854 (2018).
Jackson, M. G. et al. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature 514, 355–358 (2014).
Jackson, M. G. et al. Samoan hot spot track on a “hot spot highway”: implications for mantle plumes and a deep Samoan mantle source. Geochem. Geophys. Geosyst. 11, Q12009 (2010).
Konter, J. G. & Jackson, M. G. Large volumes of rejuvenated volcanism in Samoa: evidence supporting a tectonic influence on late-stage volcanism. Geochem. Geophys. Geosyst. 13, Q0AM04 (2012).
Koppers, A. A. P. et al. Limited latitudinal mantle plume motion for the Louisville hotspot. Nat. Geosci. 5, 911–917 (2012).
Finlayson, V. A. et al. Sr–Pb–Nd–Hf isotopes and 40Ar/39Ar ages reveal a Hawaii–Emperor-style bend in the Rurutu hotspot. Earth Planet. Sci. Lett. 500, 168–179 (2018).
Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989).
Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).
Konter, J. G. & Becker, T. W. Shallow lithospheric contribution to mantle plumes revealed by integrating seismic and geochemical data. Geochem. Geophys. Geosyst. 13, Q02004 (2012).
Koppers, A. A. P., Phipps Morgan, J., Morgan, J. W. & Staudigel, H. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet. Sci. Lett. 16, 237–252 (2001).
Campbell, I. H., Griffiths, R. W. & Hill, R. I. Melting in an Archaean mantle plume: heads it’s basalts, tails it’s komatiites. Nature 339, 697–699 (1989).
Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).
Taylor, B. The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi. Earth Planet. Sci. Lett. 241, 372–380 (2006).
Mahoney, J. J. & Spencer, K. J. Isotopic evidence for the origin of the Manihiki and Ontong Java oceanic plateaus. Earth Planet. Sci. Lett. 104, 196–210 (1991).
Golowin, R. et al. Geochemistry of deep Manihiki Plateau crust: implications for compositional diversity of large igneous provinces in the Western Pacific and their genetic link. Chem. Geol. 493, 553–566 (2018).
Henderson, L. & Gordon, R. G. Oceanic plateaus and the motion of the Pacific Plate with respect to the hotspots. EOS Trans. Am. Geophys. Union 62, 1028 (1981).
Mahoney, J. J., Storey, M., Duncan, R. A., Spencer, K. J. & Pringle, M. Geochemistry and age of the Ontong Java Plateau. Am. Geophys. Union Geophys. Monogr. Ser. 77, 233–261 (1993).
Antretter, M., Riisager, P., Hall, S., Zhao, X. & Steinberger, B. Modelled palaeolatitudes for the Louisville hot spot and the Ontong Java Plateau. Geol. Soc. Lond. Spec. Publ. 229, 21–30 (2004).
Kroenke, L. W., Wessel, P. & Sterling, A. Motion of the Ontong Java Plateau in the hot-spot frame of reference: 122 Ma-present. Geol. Soc. Lond. Spec. Publ. 229, 9–20 (2004).
Neal, C., Mahoney, J., Kroenke, L., Duncan, R. & Petterson, M. in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.) 183–216 (American Geophysical Union, 1997).
Vanderkluysen, L. et al. Louisville seamount chain: petrogenetic processes and geochemical evolution of the mantle source. Geochem. Geophys. Geosyst. 15, 2380–2400 (2014).
Tejada, M. L. G. et al. New evidence for the Ontong Java Nui hypothesis. Sci. Rep. 13, 8486 (2023).
Koppers, A. A. P., Staudigel, H., Pringle, M. S. & Wijbrans, J. R. Short-lived and discontinuous intraplate volcanism in the South Pacific: hot spots or extensional volcanism?. Geochem. Geophys. Geosyst. 4, 1089 (2003).
Sager, W. W. et al. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies. Nat. Geosci. 12, 661–666 (2019).
Kopp, H. et al. Fossil hot spot-ridge interaction in the Musicians Seamount Province: geophysical investigations of hot spot volcanism at volcanic elongated ridges. J. Geophys. Res. Solid Earth 108, 2160 (2003).
O’Connor, J. M. et al. Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian–Emperor bend. Nat. Geosci. 8, 393–397 (2015).
Fletcher, M., Wyman, D. A. & Zahirovic, S. Mantle plumes, triple junctions and transforms: a reinterpretation of Pacific Cretaceous–Tertiary LIPs and the Laramide connection. Geosci. Front. 11, 1133–1144 (2020).
Davis, A. S., Gray, L. B., Clague, D. A. & Hein, J. R. The Line Islands revisited: new 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension. Geochem. Geophys. Geosyst. 3, 1–28 (2002).
Sager, W. W. What built Shatsky Rise, a mantle plume or ridge tectonics? Geol. Soc. Am. Spec. Pap. 388, 15 (2005).
Heaton, D. E. & Koppers, A. A. P. High-resolution 40Ar/39Ar geochronology of the Louisville seamounts IODP expedition 330 drill sites: implications for the duration of hot spot-related volcanism and age progressions. Geochem. Geophys. Geosyst. 20, 4073–4102 (2019).
Bono, R. K., Tarduno, J. A. & Bunge, H.-P. Hotspot motion caused the Hawaiian–Emperor bend and LLSVPs are not fixed. Nat. Commun. 10, 3370 (2019).
Cande, S. C., Raymond, C. A., Stock, J. & Haxby, W. F. Geophysics of the Pitman Fracture Zone and Pacific–Antarctic plate motions during the Cenozoic. Sci. New Ser. 270, 947–953 (1995).
Wessel, P. & Kroenke, L. W. Pacific absolute plate motion since 145 Ma: an assessment of the fixed hot spot hypothesis. J. Geophys. Res. 113, B06101 (2008).
O’Connor, J. M. et al. Constraints on past plate and mantle motion from new ages for the Hawaiian–Emperor seamount chain. Geochem. Geophys. Geosyst. 14, 4564–4584 (2013).
Staudigel, H., Koppers, A. A. P., Plank, T. A. & Hanan, B. B. Seamounts in the subduction factory. Oceanography 23, 176–181 (2010).
Janney, P. E. & Castillo, P. R. Isotope geochemistry of the Darwin Rise seamounts and the nature of long-term mantle dynamics beneath the south central Pacific. J. Geophys. Res. Solid Earth 104, 10571–10589 (1999).
Jackson, M. G. et al. The return of subducted continental crust in Samoan lavas. Nature 448, 684–687 (2007).
Konter, J. G. et al. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth Planet. Sci. Lett. 275, 285–295 (2008).
Hart, S. R. et al. Genesis of the Western Samoa seamount province: age, geochemical fingerprint and tectonics. Earth Planet. Sci. Lett. 227, 37–56 (2004).
Price, A. A. et al. Distinguishing volcanic contributions to the overlapping Samoan and Cook–Austral hotspot tracks. J. Petrol. 63, egac032 (2022).
Reinhard, A. A. et al. “Petit spot” rejuvenated volcanism superimposed on plume-derived Samoan shield volcanoes: evidence from a 645-m drill core from Tutuila Island, American Samoa. Geochem. Geophys. Geosyst. 20, 1485–1507 (2019).
Staudigel, H. et al. The longevity of the South Pacific isotopic and thermal anomaly. Earth Planet. Sci. Lett. 102, 24–44 (1991).
Stern, R. J., Fouch, M. J. & Klemperer, S. L. in Inside the Subduction Factory (ed. Eiler, S.) 175–222 (American Geophysical Union, 2004).
DIGIS Team ‘2023-12-PVFZCE_IZU-BONIN-MARIANA_ARC.csv’. GEOROC compilation: convergent margins. GEOROC https://doi.org/10.25625/PVFZCE/6MYFA2 (2023).
Torsvik, T. H. et al. Pacific–Panthalassic reconstructions: overview, errata and the way forward. Geochem. Geophys. Geosyst. 20, 3659–3689 (2019).
Chandler, M. T. et al. Reconstructing Ontong Java Nui: implications for Pacific absolute plate motion, hotspot drift and true polar wander. Earth Planet. Sci. Lett. 331–332, 140–151 (2012).
Davidson, P. C., Koppers, A. A. P., Sano, T. & Hanyu, T. A younger and protracted emplacement of the Ontong Java Plateau. Science 380, 1185–1188 (2023).
Wei, X. et al. Co-occurrence of HIMU and EM1 components in a single Magellan seamount: implications for the formation of West Pacific Seamount Province. J. Petrol. 63, egac022 (2022).
Harrison, L. N. & Weis, D. The size and emergence of geochemical heterogeneities in the Hawaiian mantle plume constrained by Sr–Nd–Hf isotopic variation over ∼47 million years. Geochem. Geophys. Geosyst. 19, 2823–2842 (2018).
Harrison, L. N., Weis, D. & Garcia, M. O. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics. Earth Planet. Sci. Lett. 463, 298–309 (2017).
Harrison, L. N., Weis, D. & Garcia, M. O. The multiple depleted mantle components in the Hawaiian–Emperor chain. Chem. Geol. 532, 119324 (2020).
Bonneville, A., Dosso, L. & Hildenbrand, A. Temporal evolution and geochemical variability of the South Pacific superplume activity. Earth Planet. Sci. Lett. 244, 251–269 (2006).
Buff, L. et al. “Missing links” for the long-lived Macdonald and Arago hotspots, South Pacific Ocean. Geology 49, 541–544 (2021).
Hémond, C., Devey, C. W. & Chauvel, C. Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): element and isotope (Sr, Nd, Pb, Th) geochemistry. Chem. Geol. 115, 7–45 (1994).
Cheng, Q. et al. in Seamounts, Islands, and Atolls (eds Keating, B. H. et al) 283–296 (American Geophysical Union, 1987).
Beier, C., Vanderkluysen, L., Regelous, M., Mahoney, J. J. & Garbe-Schönberg, D. Lithospheric control on geochemical composition along the Louisville Seamount Chain. Geochem. Geophys. Geosyst. 12, Q0AM01 (2011).
DIGIS Team GEOROC compilation: ocean island groups. GEOROC https://doi.org/10.25625/WFJZKY (2023).
Tejada, M. L. G., Mahoney, J. J., Duncan, R. A. & Hawkins, M. P. Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of Ontong Java Plateau. J. Petrol. 37, 361–394 (1996).
Tejada, M. L. G. et al. Pin-pricking the elephant: evidence on the origin of the Ontong Java Plateau from Pb–Sr–Hf–Nd isotopic characteristics of ODP leg 192 basalts. Geol. Soc. Lond. Spec. Publ. 229, 133–150 (2004).
Tejada, M. L. G., Mahoney, J. J., Neal, C. R., Duncan, R. A. & Petterson, M. G. Basement geochemistry and geochronology of Central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau. J. Petrol. 43, 449–484 (2002).
Hoernle, K. et al. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus. Geochim. Cosmochim. Acta 74, 7196–7219 (2010).
Timm, C. et al. Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: new evidence for a plume origin. Earth Planet. Sci. Lett. 304, 135–146 (2011).
Ingle, S. et al. Depleted mantle wedge and sediment fingerprint in unusual basalts from the Manihiki Plateau, central Pacific Ocean. Geology 35, 595 (2007).
Golowin, R. et al. Boninite-like intraplate magmas from Manihiki Plateau require ultra-depleted and enriched source components. Nat. Commun. 8, 14322 (2017).
Hauri, E. H., Whitehead, J. A. & Hart, S. R. Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J. Geophys. Res. 99, 24275–24300 (1994).
Class, C. & Lehnert, K. PetDB expert MORB (mid-ocean ridge basalt) compilation https://search.earthchem.org/ (2012).
Ruellan, E., Delteil, J., Wright, I. & Matsumoto, T. From rifting to active spreading in the Lau Basin–Havre Trough backarc system (SW Pacific): locking/unlocking induced by seamount chain subduction. Geochem. Geophys. Geosyst. 4, 8909 (2003).
Torsvik, T. H., Steinberger, B., Gurnis, M. & Gaina, C. Plate tectonics and net lithosphere rotation over the past 150My. Earth Planet. Sci. Lett. 291, 106–112 (2010).
Jochum, K. P. et al. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 29, 333–338 (2005).
Konter, J. G. & Storm, L. P. High precision 87Sr/86Sr measurements by MC-ICP-MS, simultaneously solving for Kr interferences and mass-based fractionation. Chem. Geol. 385, 26–34 (2014).
Todt, W., Cliff, R., Hanser, A. & Hofmann, A. Evaluation of a 202Pb–205Pb double spike for high-precision lead isotope analysis. Geophys. Monogr. Ser. 95, 429–437 (1996).
Münker, C., Weyer, S., Scherer, E. & Mezger, K. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosyst. 2, 1064 (2001).
Béguelin, P., Bizimis, M., Beier, C. & Turner, S. Rift–plume interaction reveals multiple generations of recycled oceanic crust in Azores lavas. Geochim. Cosmochim. Acta 218, 132–152 (2017).
Blichert-Toft, J. & Albarède, F. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet. Sci. Lett. 148, 243–258 (1997).
Koppers, A. A. P. ArArCALC—software for 40Ar/39Ar age calculations. Comput. Geosci. 28, 605–619 (2002).
Min, K., Mundil, R., Renne, P. R. & Ludwig, K. R. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim. Cosmochim. Acta 64, 73–98 (2000).
Kuiper, K. F. et al. Synchronizing rock clocks of Earth history. Science 320, 500–504 (2008).
Lee, J.-Y. et al. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70, 4507–4512 (2006).
Schaen, A. J. et al. Interpreting and reporting 40Ar/39Ar geochronologic data. GSA Bull. 133, 461–487 (2021).
Allègre, C. J., Hamelin, B., Provost, A. & Dupré, B. Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth Planet. Sci. Lett. 81, 319–337 (1987).
Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).
Hanan, B. B. & Graham, D. W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Sci. New Ser. 272, 991–995 (1996).
Smith, W. H. F., Staudigel, H., Watts, A. B. & Pringle, M. S. The Magellan seamounts: Early Cretaceous record of the South Pacific isotopic and thermal anomaly. J. Geophys. Res. Solid Earth 94, 10501–10523 (1989).
Hauff, F., Hoernle, K. & Schmidt, A. Sr–Nd–Pb composition of Mesozoic Pacific oceanic crust (site 1149 and 801, ODP leg 185): implications for alteration of ocean crust and the input into the Izu–Bonin–Mariana subduction system. Geochem. Geophys. Geosyst. 4, 8913 (2003).
Geldmacher, J. et al. The effects of submarine alteration and phosphatization on igneous rocks: implications for Sr-, Nd-, Pb-isotope studies. Chem. Geol. 631, 121509 (2023).
Kingsley, R. H., Blichert-Toft, J., Fontignie, D. & Schilling, J.-G. Hafnium, neodymium, and strontium isotope and parent–daughter element systematics in basalts from the plume–ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochem. Geophys. Geosyst. 8, Q04005 (2007).
Regelous, M. Geochemistry of lavas from the Emperor aeamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol. 44, 113–140 (2003).
Nebel, O. et al. Coupled Hf–Nd–Pb isotope co-variations of HIMU oceanic island basalts from Mangaia, Cook–Austral islands, suggest an Archean source component in the mantle transition zone. Geochim. Cosmochim. Acta 112, 87–101 (2013).
Sun, S.-S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313–345 (1989).
Hart, S. R. & Blusztajn, J. Age and geochemistry of the mafic sills, ODP site 1276, Newfoundland margin. Chem. Geol. 235, 222–237 (2006).
Morgan, W. J. Deep mantle convection plumes and plate motions. AAPG Bull. 56, 203–213 (1972).
Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor–Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004).
Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019).
Duncan, R. A. & Keller, R. A. Radiometric ages for basement rocks from the Emperor seamounts, ODP leg 197. Geochem. Geophys. Geosyst. 5, Q08L03 (2004).
Koppers, A. A. P., Duncan, R. A. & Steinberger, B. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochem. Geophys. Geosyst. 5, Q06L02 (2004).
Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).
Hochmuth, K., Gohl, K. & Uenzelmann-Neben, G. Playing jigsaw with large igneous provinces—a plate tectonic reconstruction of Ontong Java Nui, West Pacific. Geochem. Geophys. Geosyst. 16, 3789–3807 (2015).
Zhang, G.-L. & Li, C. Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough. Sci. Rep. 6, 37561 (2016).
Wobbe, F., Gohl, K., Chambord, A. & Sutherland, R. Structure and breakup history of the rifted margin of West Antarctica in relation to Cretaceous separation from Zealandia and Bellingshausen plate motion. Geochem. Geophys. Geosyst. 13, Q04W12 (2012).
Mortimer, N. et al. Late Cretaceous oceanic plate reorganization and the breakup of Zealandia and Gondwana. Gondwana Res. 65, 31–42 (2019).
Davidson, P. C., Koppers, Aa. P. & Konter, J. G. Rapid formation of the Ellice and Osbourn basins and Ontong Java Nui breakup kinematics. Geochem. Geophys. Geosyst. 24, e2022GC010592 (2023).
Benyshek, E. K., Wessel, P. & Taylor, B. Tectonic reconstruction of the Ellice Basin. Tectonics 38, 3854–3865 (2019).
Konter, J. G. et al. Geochemical stages at Jasper Seamount and the origin of intraplate volcanoes. Geochem. Geophys. Geosyst. 10, Q02001 (2009).
Koppers, A. A. P. Asynchronous bends in Pacific seamount trails: a case for extensional volcanism? Science 307, 904–907 (2005).
Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992).
Koppers, A. A. P. et al. Samoa reinstated as a primary hotspot trail. Geology 36, 435 (2008).
Koppers, A. A. P., Staudigel, H., Wijbrans, J. R. & Pringle, M. S. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific Plate motion. Earth Planet. Sci. Lett. 163, 53–68 (1998).
Koppers, A. A. P. Mantle plumes persevere. Nat. Geosci. 4, 816–817 (2011).
Koppers, A. A. P. et al. Age systematics of two young en echelon Samoan volcanic trails. Geochem. Geophys. Geosyst. 12, Q07025 (2011).
Coffin, M. F. et al. Large igneous provinces and scientific ocean drilling: status quo and a look ahead. Oceanography 19, 150–160 (2006).
Regelous, M. et al. Mantle dynamics and mantle melting beneath Niuafo’ou Island and the northern Lau back-arc basin. Contrib. Mineral. Petrol. 156, 103–118 (2008).