Thursday, February 19, 2026
No menu items!
HomeNatureOxygen metabolism in descendants of the archaeal-eukaryotic ancestor

Oxygen metabolism in descendants of the archaeal-eukaryotic ancestor

  • Vosseberg, J. et al. The emerging view on the origin and early evolution of eukaryotic cells. Nature 633, 295–305 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamarit, D. et al. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst. Appl. Microbiol. 47, 126525 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • López-García, P. & Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Moreira, D. & Lopez-Garcia, P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Imachi, H. et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519–525 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues-Oliveira, T. et al. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature 613, 332–339 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Imachi, H. et al. Eukaryotes’ closest relatives are internally simple syntrophic archaea. Preprint at bioRxiv https://doi.org/10.1101/2025.02.26.640444 (2025).

  • Zhang, J. et al. Deep origin of eukaryotes outside Heimdallarchaeia within Asgardarchaeota. Nature 642, 990–998 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahendrarajah, T. A. et al. ATP synthase evolution on a cross-braced dated tree of life. Nat. Commun. 14, 7456 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulzu, P.-A. et al. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol. 4, 1129–1137 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz-Gómez, S. A. Energetics and evolution of anaerobic microbial eukaryotes. Nat. Microbiol. 8, 197–203 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. Active bacterial and archaeal communities in coastal sediments: Biogeography pattern, assembly process and co-occurrence relationship. Sci. Total Environ. 750, 142252 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X., Li, Y., Song, G., Zhao, L. & Wang, J. Adaptation of Archaeal communities to summer hypoxia in the sediment of Bohai Sea. Ecol. Evol. 15, e70768 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, X. et al. New globally distributed bacterial phyla within the FCB superphylum. Nat. Commun. 13, 7516 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langwig, M. V. et al. Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. ISME J. 16, 307–320 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, X. et al. Contrasting archaeal and bacterial community assembly processes and the importance of rare taxa along a depth gradient in shallow coastal sediments. Sci. Total Environ. 852, 158411 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Köstlbacher, S. et al. Prediction of eukaryotic cellular complexity in Asgard archaea using structural modelling. Nat. Microbiol. https://doi.org/10.1038/s41564-026-02273-y (2026).

  • Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138–147 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-R, L. M., Tsementzi, D., Luo, C. & Konstantinidis, K. T. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ. Microbiol. 22, 3394–3412 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glasl, B. et al. Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. ISME J. 14, 1435–1450 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rezaei Somee, M. et al. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Sci. Rep. 11, 11316 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnum, T. P. et al. Predicting microbial growth conditions from amino acid composition. Preprint at bioRxiv https://doi.org/10.1101/2024.03.22.586313 (2024).

  • Gawryluk, R. M. R. & Stairs, C. W. Diversity of electron transport chains in anaerobic protists. Biochim. Biophys. Acta, Bioenerg. 1862, 148334 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stairs, C. W. et al. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci. Adv. 6, eabb7258 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geiger, O., Sanchez-Flores, A., Padilla-Gomez, J. & Degli Esposti, M. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. Sci. Adv. 9, eadh0066 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Woodcroft, B. J. et al. Comprehensive taxonomic identification of microbial species in metagenomic data using SingleM and Sandpiper. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02738-1 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, H., Schut, G. J., Haja, D. K., Adams, M. W. W. & Li, H. Evolution of complex I-like respiratory complexes. J. Biol. Chem. 296, 100740 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greening, C. et al. Minimal and hybrid hydrogenases are active from archaea. Cell 187, 3357–3372.e19 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valentin-Alvarado, L. E. et al. Asgard archaea modulate potential methanogenesis substrates in wetland soil. Nat. Commun. 15, 6384 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, H. et al. Structure of an ancient respiratory system. Cell 173, 1636–1649.e16 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baradaran, R., Berrisford, J. M., Minhas, G. S. & Sazanov, L. A. Crystal structure of the entire respiratory complex I. Nature 494, 443–448 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuller, J. M. et al. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 363, 257–260 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kravchuk, V. et al. A universal coupling mechanism of respiratory complex I. Nature 609, 808–814 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chadwick, G. L., Hemp, J., Fischer, W. W. & Orphan, V. J. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J. 12, 2668–2680 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663–675 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banci, L., Bertini, I., Cavallaro, G. & Rosato, A. The functions of Sco proteins from genome-based analysis. J. Proteome Res. 6, 1568–1579 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gribaldo, S., Talla, E. & Brochier-Armanet, C. Evolution of the haem copper oxidases superfamily: a rooting tale. Trends Biochem. Sci. 34, 375–381 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alcott, L. J., Mills, B. J. W., Bekker, A. & Poulton, S. W. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling. Nat. Geosci. 15, 210–215 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Canfield, D. E. Carbon cycle evolution before and after the Great Oxidation of the atmosphere. Am. J. Sci. 321, 297–331 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Riedman, L. A., Porter, S. M., Lechte, M. A., dos Santos, A. & Halverson, G. P. Early eukaryotic microfossils of the late Palaeoproterozoic Limbunya Group, Birrindudu Basin, northern Australia. Pap. Palaeontol. 9, e1538 (2023).

    Article 

    Google Scholar
     

  • Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, W. F. et al. Late Mitochondrial Origin Is an Artifact. Genome Biol. Evol. 9, 373–379 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ettema, T. J. G. Evolution: mitochondria in the second act. Nature 531, 39–40 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Agić, H. in Prebiotic Chemistry and the Origin of Life (eds Neubeck, A. & McMahon, S.) 255–289 (Springer, 2021).

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karst, S. M., Kirkegaard, R. H. & Albertsen, M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at bioRxiv https://doi.org/10.1101/059121 (2016).

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hugoson, E., Lam, W. T. & Guy, L. miComplete: weighted quality evaluation of assembled microbial genomes. Bioinformatics 36, 936–937 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Anda, V. et al. MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle. Gigascience 6, gix096 (2017).

    Article 

    Google Scholar
     

  • Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aroney, S. T. N. et al. CoverM: read alignment statics for metagenomics. Bioinformatics 41, btaf147 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rawlings, N. D., Barrett, A. J. & Bateman, A. MEROPS: the peptidase database. Nucleic Acids Res. 38, D227–D233 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hernández-Plaza, A. et al. eggNOG 6.0: enabling comparative genomics across 12 535 organisms. Nucleic Acids Res. 51, D389–D394 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 39, D38–D51 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parks, D. H. et al. Author Correction: recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 3, 253 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schäffer, A. A. et al. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29, 2994–3005 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petitjean, C., Deschamps, P., López-García, P., Moreira, D. & Brochier-Armanet, C. Extending the conserved phylogenetic core of archaea disentangles the evolution of the third domain of life. Mol. Biol. Evol. 32, 1242–1254 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deorowicz, S., Debudaj-Grabysz, A. & Gudyś, A. FAMSA: fast and accurate multiple sequence alignment of huge protein families. Sci. Rep. 6, 33964 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 2461 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H.-C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steenwyk, J. L. et al. BioKIT: a versatile toolkit for processing and analyzing diverse types of sequence data. Genetics 221, iyac079 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter, D. J. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Commun. J. 2, e56 (2022).

    Article 

    Google Scholar
     

  • Contreras-Moreira, B. & Vinuesa, P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79, 7696–7701 (2013).

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dong, R., Peng, Z., Zhang, Y. & Yang, J. mTM-align: an algorithm for fast and accurate multiple protein structure alignment. Bioinformatics 34, 1719–1725 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Appler, K. E. et al. Oxygen metabolism in descendants of the archaeal-eukaryotic ancestor. Figshare https://figshare.com/s/f139faeb05653d1adf6b (2026).

  • RELATED ARTICLES

    Most Popular

    Recent Comments