Erecińska, M. & Silver, I. A. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276 (2001).
Tuo, Q. Z., Zhang, S. T. & Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev. 42, 259–305 (2022).
Radak, D. et al. Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol. 15, 115–122 (2017).
Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).
Meyer, D. B. in The Visual System in Vertebrates. Handbook of Sensory Physiology Vol. 7 (ed. Crescitelli, F.) (Springer, 1977).
Walls, G. L. The Vertebrate Eye and its Adaptive Radiation (Cranbrook Institute of Science, 1942).
Mann, I. C. The function of the pecten. Br. J. Ophthalmol. 8, 209 (1924).
Brach, V. The functional significance of the avian pecten: a review. Condor 79, 321–327 (1977).
Borrichius, O. & Coringius, H. Hermetis, Ægyptiorum, et Chemicorum Sapientia (Petri Hauboldi, 1674).
Caprara, C. & Grimm, C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog. Retin. Eye Res. 31, 89–119 (2012).
Kaur, C., Foulds, W. S. & Ling, E.-A. Hypoxia-ischemia and retinal ganglion cell damage. Clin. Ophthalmol. 2, 879–889 (2008).
Park, T. J. et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356, 307–311 (2017).
Ames, A. III Energy requirements of CNS cells as related to their function and to their vulnerability to ischemia: a commentary based on studies on retina. Can. J. Physiol. Pharmacol. 70, S158–S164 (1992).
Nickla, D. L. & Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 29, 144–168 (2010).
Country, M. W. Retinal metabolism: a comparative look at energetics in the retina. Brain Res. 1672, 50–57 (2017).
Damsgaard, C. & Country, M. W. The opto-respiratory compromise: balancing oxygen supply and light transmittance in the retina. Physiology 37, 101–113 (2022).
Franze, K. et al. Muller cells are living optical fibers in the vertebrate retina. Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).
Chase, J. The evolution of retinal vascularization in mammals: a comparison of vascular and avascular retinae. Ophthalmology 89, 1518–1525 (1982).
Damsgaard, C. et al. Retinal oxygen supply shaped the functional evolution of the vertebrate eye. eLife 8, e52153 (2019).
Buttery, R. G., Hinrichsen, C. F. L., Weller, W. L. & Haight, J. R. How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vis. Res. 31, 169–187 (1991).
Tommasini, D., Yoshimatsu, T., Puthussery, T., Baden, T. & Shekhar, K. Comparative transcriptomic insights into the evolution of vertebrate photoreceptor types. Curr. Biol. 35, 2228–2239 (2025).
Hurley, J. B. Retina metabolism and metabolism in the pigmented epithelium: a busy intersection. Ann. Rev. Vis. Sci. 7, 665–692 (2021).
Potier, S., Mitkus, M. & Kelber, A. Visual adaptations of diurnal and nocturnal raptors. Semin. Cell Dev. Biol. 106, 116–126 (2020).
Dollery, C. T., Bulpitt, C. J. & Kohner, E. M. Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Invest. Ophthalmol. Vis. Sci. 8, 588–594 (1969).
Pawlik, G., Rackl, A. & Bing, R. J. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res. 208, 35–58 (1981).
Isaacs, K. R., Anderson, B. J., Alcantara, A. A., Black, J. E. & Greenough, W. T. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 12, 110–119 (1992).
Black, C. P. & Tenney, S. M. Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir. Physiol. 39, 217–239 (1980).
Christensen, N. K., Beedholm, K. & Damsgaard, C. Short communication: maintained visual performance in birds under high altitude hypoxia. Comp. Biochem. Physiol. A 296, 111691 (2024).
Linsenmeier, R. A. & Braun, R. D. Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J. Gen. Physiol. 99, 177–197 (1992).
Yu, D.-Y., Cringle, S. J., Alder, V. A., Su, E. & Yu, P. K. Intraretinal oxygen distribution and choroidal regulation in the avascular retina of guinea pigs. Am. J. Physiol. 270, H965–H973 (1996).
Raleigh, J. A. et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 58, 3765–3768 (1998).
Butler, P. & Taylor, E. Responses of the respiratory and cardiovascular systems of chickens and pigeons to changes in PaO2 and PaCO2. Respir. Physiol. 21, 351–363 (1974).
Shams, H. & Scheid, P. Respiration and blood gases in the duck exposed to normocapnic and hypercapnic hypoxia. Respir. Physiol. 67, 1–12 (1987).
Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).
Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34, 121–138 (2013).
Halestrap, A. P. The SLC16 gene family–structure, role and regulation in health and disease. Mol. Aspects Med. 34, 337–349 (2013).
Peynshaert, K., Devoldere, J., Minnaert, A.-K., De Smedt, S. C. & Remaut, K. Morphology and composition of the inner limiting membrane: species-specific variations and relevance toward drug delivery research. Curr. Eye Res. 44, 465–475 (2019).
Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).
Mann, I. C. On the development of the fissural and associated regions in the eye of the chick, with some observations on the mammal. J. Anat. 55, 113 (1921).
Wingstrand, K. G. & Munk, O. The Pecten Oculi of the Pigeon with Particular Regard to its Function (Kommissionaer: Munksgaard, 1965).
Jasiński, A. Fine structure of capillaries in the pecten oculi of the sparrow, Passer domesticus. Zeitschr. Zellforsch. Mikrosk. Anat. 146, 281–292 (1973).
Kauth, H. & Sommer, H. The ferment carbonic anhydrase in the animal body. IV. On the function of the pecten in the bird’s eye. Biol. Zbl 72, 196–209 (1953).
Pettigrew, J. D., Wallman, J. & Wildsoet, C. F. Saccadic oscillations facilitate ocular perfusion from the avian pecten. Nature 343, 362–363 (1990).
Davson, H. & Luck, C. A comparative study of the total carbon dioxide in the ocular fluids, cerebrospinal fluid, and plasma of some mammalian species. J. Physiol. 132, 454 (1956).
Brach, V. The effect of intraocular ablation of the pecten oculi of the chicken. Invest. Ophthalmol. Vis. Sci. 14, 166–168 (1975).
Akhlagh Moayed, A., Hariri, S., Choh, V. & Bizheva, K. Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system. J. Biomed. Opt. 17, 016011 (2012).
Greunz, E. M. et al. Elimination of intracardiac shunting provides stable gas anesthesia in tortoises. Sci. Rep. 8, 17124 (2018).
Williams, C. J., Malte, C. L., Malte, H., Bertelsen, M. F. & Wang, T. Ectothermy and cardiac shunts profoundly slow the equilibration of inhaled anaesthetics in a multi-compartment model. Sci. Rep. 10, 17157 (2020).
Kristensen, L. et al. Effect of atropine and propofol on the minimum anaesthetic concentration of isoflurane in the freshwater turtle Trachemys scripta (yellow-bellied slider). Vet. Anaesth. Analg. 50, 180–187 (2023).
Yu, D. Y. & Cringle, S. J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog. Retin. Eye Res. 20, 175–208 (2001).
Damsgaard, C. et al. A novel acidification mechanism for greatly enhanced oxygen supply to the fish retina. eLife 9, e58995 (2020).
Busk, M. et al. PET imaging of tumor hypoxia using 18F-labeled pimonidazole. Acta Oncol. 52, 1300–1307 (2013).
Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).
Dong, M. et al. SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Brief. Bioinform. 22, 416–427 (2020).
Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).
Hahn, J. et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature 624, 415–424 (2023).
Li, J. et al. Comprehensive single-cell atlas of the mouse retina. iScience 27, 109916 (2024).
Wang, J. et al. Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types. Nat. Commun. 15, 10761 (2024).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Damsgaard, C. et al. Data for ‘Oxygen-free metabolism in the bird inner retina supported by the pecten’. Figshare https://doi.org/10.6084/m9.figshare.30608753.v3 (2025).

