Friday, January 23, 2026
No menu items!
HomeNatureOxygen-free metabolism in the bird inner retina supported by the pecten

Oxygen-free metabolism in the bird inner retina supported by the pecten

  • Erecińska, M. & Silver, I. A. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Tuo, Q. Z., Zhang, S. T. & Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev. 42, 259–305 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Radak, D. et al. Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol. 15, 115–122 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, D. B. in The Visual System in Vertebrates. Handbook of Sensory Physiology Vol. 7 (ed. Crescitelli, F.) (Springer, 1977).

  • Walls, G. L. The Vertebrate Eye and its Adaptive Radiation (Cranbrook Institute of Science, 1942).

  • Mann, I. C. The function of the pecten. Br. J. Ophthalmol. 8, 209 (1924).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brach, V. The functional significance of the avian pecten: a review. Condor 79, 321–327 (1977).

    Article 

    Google Scholar
     

  • Borrichius, O. & Coringius, H. Hermetis, Ægyptiorum, et Chemicorum Sapientia (Petri Hauboldi, 1674).

  • Caprara, C. & Grimm, C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog. Retin. Eye Res. 31, 89–119 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaur, C., Foulds, W. S. & Ling, E.-A. Hypoxia-ischemia and retinal ganglion cell damage. Clin. Ophthalmol. 2, 879–889 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, T. J. et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356, 307–311 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ames, A. III Energy requirements of CNS cells as related to their function and to their vulnerability to ischemia: a commentary based on studies on retina. Can. J. Physiol. Pharmacol. 70, S158–S164 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nickla, D. L. & Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 29, 144–168 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Country, M. W. Retinal metabolism: a comparative look at energetics in the retina. Brain Res. 1672, 50–57 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damsgaard, C. & Country, M. W. The opto-respiratory compromise: balancing oxygen supply and light transmittance in the retina. Physiology 37, 101–113 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franze, K. et al. Muller cells are living optical fibers in the vertebrate retina. Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chase, J. The evolution of retinal vascularization in mammals: a comparison of vascular and avascular retinae. Ophthalmology 89, 1518–1525 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damsgaard, C. et al. Retinal oxygen supply shaped the functional evolution of the vertebrate eye. eLife 8, e52153 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buttery, R. G., Hinrichsen, C. F. L., Weller, W. L. & Haight, J. R. How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vis. Res. 31, 169–187 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tommasini, D., Yoshimatsu, T., Puthussery, T., Baden, T. & Shekhar, K. Comparative transcriptomic insights into the evolution of vertebrate photoreceptor types. Curr. Biol. 35, 2228–2239 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hurley, J. B. Retina metabolism and metabolism in the pigmented epithelium: a busy intersection. Ann. Rev. Vis. Sci. 7, 665–692 (2021).

    Article 

    Google Scholar
     

  • Potier, S., Mitkus, M. & Kelber, A. Visual adaptations of diurnal and nocturnal raptors. Semin. Cell Dev. Biol. 106, 116–126 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Dollery, C. T., Bulpitt, C. J. & Kohner, E. M. Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Invest. Ophthalmol. Vis. Sci. 8, 588–594 (1969).

    CAS 

    Google Scholar
     

  • Pawlik, G., Rackl, A. & Bing, R. J. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res. 208, 35–58 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isaacs, K. R., Anderson, B. J., Alcantara, A. A., Black, J. E. & Greenough, W. T. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 12, 110–119 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Black, C. P. & Tenney, S. M. Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir. Physiol. 39, 217–239 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christensen, N. K., Beedholm, K. & Damsgaard, C. Short communication: maintained visual performance in birds under high altitude hypoxia. Comp. Biochem. Physiol. A 296, 111691 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Linsenmeier, R. A. & Braun, R. D. Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J. Gen. Physiol. 99, 177–197 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, D.-Y., Cringle, S. J., Alder, V. A., Su, E. & Yu, P. K. Intraretinal oxygen distribution and choroidal regulation in the avascular retina of guinea pigs. Am. J. Physiol. 270, H965–H973 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Raleigh, J. A. et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 58, 3765–3768 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Butler, P. & Taylor, E. Responses of the respiratory and cardiovascular systems of chickens and pigeons to changes in PaO2 and PaCO2. Respir. Physiol. 21, 351–363 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shams, H. & Scheid, P. Respiration and blood gases in the duck exposed to normocapnic and hypercapnic hypoxia. Respir. Physiol. 67, 1–12 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34, 121–138 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halestrap, A. P. The SLC16 gene family–structure, role and regulation in health and disease. Mol. Aspects Med. 34, 337–349 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peynshaert, K., Devoldere, J., Minnaert, A.-K., De Smedt, S. C. & Remaut, K. Morphology and composition of the inner limiting membrane: species-specific variations and relevance toward drug delivery research. Curr. Eye Res. 44, 465–475 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).

  • Mann, I. C. On the development of the fissural and associated regions in the eye of the chick, with some observations on the mammal. J. Anat. 55, 113 (1921).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wingstrand, K. G. & Munk, O. The Pecten Oculi of the Pigeon with Particular Regard to its Function (Kommissionaer: Munksgaard, 1965).

  • Jasiński, A. Fine structure of capillaries in the pecten oculi of the sparrow, Passer domesticus. Zeitschr. Zellforsch. Mikrosk. Anat. 146, 281–292 (1973).

    Article 

    Google Scholar
     

  • Kauth, H. & Sommer, H. The ferment carbonic anhydrase in the animal body. IV. On the function of the pecten in the bird’s eye. Biol. Zbl 72, 196–209 (1953).


    Google Scholar
     

  • Pettigrew, J. D., Wallman, J. & Wildsoet, C. F. Saccadic oscillations facilitate ocular perfusion from the avian pecten. Nature 343, 362–363 (1990).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davson, H. & Luck, C. A comparative study of the total carbon dioxide in the ocular fluids, cerebrospinal fluid, and plasma of some mammalian species. J. Physiol. 132, 454 (1956).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brach, V. The effect of intraocular ablation of the pecten oculi of the chicken. Invest. Ophthalmol. Vis. Sci. 14, 166–168 (1975).

    CAS 

    Google Scholar
     

  • Akhlagh Moayed, A., Hariri, S., Choh, V. & Bizheva, K. Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system. J. Biomed. Opt. 17, 016011 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Greunz, E. M. et al. Elimination of intracardiac shunting provides stable gas anesthesia in tortoises. Sci. Rep. 8, 17124 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, C. J., Malte, C. L., Malte, H., Bertelsen, M. F. & Wang, T. Ectothermy and cardiac shunts profoundly slow the equilibration of inhaled anaesthetics in a multi-compartment model. Sci. Rep. 10, 17157 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kristensen, L. et al. Effect of atropine and propofol on the minimum anaesthetic concentration of isoflurane in the freshwater turtle Trachemys scripta (yellow-bellied slider). Vet. Anaesth. Analg. 50, 180–187 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, D. Y. & Cringle, S. J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog. Retin. Eye Res. 20, 175–208 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damsgaard, C. et al. A novel acidification mechanism for greatly enhanced oxygen supply to the fish retina. eLife 9, e58995 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busk, M. et al. PET imaging of tumor hypoxia using 18F-labeled pimonidazole. Acta Oncol. 52, 1300–1307 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, M. et al. SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Brief. Bioinform. 22, 416–427 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn, J. et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature 624, 415–424 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Comprehensive single-cell atlas of the mouse retina. iScience 27, 109916 (2024).

  • Wang, J. et al. Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types. Nat. Commun. 15, 10761 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damsgaard, C. et al. Data for ‘Oxygen-free metabolism in the bird inner retina supported by the pecten’. Figshare https://doi.org/10.6084/m9.figshare.30608753.v3 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments