Thursday, April 3, 2025
No menu items!
HomeNatureOxidation of retromer complex controls mitochondrial translation

Oxidation of retromer complex controls mitochondrial translation

  • Chio, I. I. C. & Tuveson, D. A. ROS in cancer: the burning question. Trends Mol. Med. 23, 411–429 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Williams, E. T., Chen, X. & Moore, D. J. VPS35, the retromer complex and Parkinson’s disease. J. Parkinsons Dis. 7, 219–233 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, Y. & Birsoy, K. Metabolic sensing and control in mitochondria. Mol. Cell 83, 877–889 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bar-Peled, L. & Kory, N. Principles and functions of metabolic compartmentalization. Nat. Metab. 4, 1232–1244 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Reczek, C. R. & Chandel, N. S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33, 8–13 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Chouchani, E. T., Kazak, L. & Spiegelman, B. M. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: bridging physiology and mechanisms. J. Biol. Chem. 292, 16810–16816 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Collins, Y. et al. Mitochondrial redox signalling at a glance. J. Cell Sci. 125, 801–806 (2012).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xiao, H. et al. A quantitative tissue-specific landscape of protein redox regulation during aging. Cell 180, 968–983.e924 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Takahashi, M. et al. DrugMap: a quantitative pan-cancer analysis of cysteine ligandability. Cell 187, 2536–2556 e2530 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, J. & Bar-Peled, L. Chemical biology approaches to uncovering nuclear ROS control. Curr. Opin. Chem. Biol. 76, 102352 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, I. S. & DeNicola, G. M. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 30, 440–451 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ge, M., Papagiannakopoulos, T. & Bar-Peled, L. Reductive stress in cancer: coming out of the shadows. Trends Cancer 10, 103–112 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J 417, 1–13 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Brand, M. D. et al. Suppressors of superoxide-H2O2 production at site IQ of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab. 24, 582–592 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashrafi, G., Schlehe, J. S., LaVoie, M. J. & Schwarz, T. L. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 206, 655–670 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Assigning functionality to cysteines by base editing of cancer dependency genes. Nat. Chem. Biol. 19, 1320–1330 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lue, N. Z. et al. Base editor scanning charts the DNMT3A activity landscape. Nat. Chem. Biol. 19, 176–186 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gallon, M. & Cullen, P. J. Retromer and sorting nexins in endosomal sorting. Biochem. Soc. Trans. 43, 33–47 (2015).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chandel, N. S. Evolution of mitochondria as signaling organelles. Cell Metab. 22, 204–206 (2015).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yang, H. et al. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 37, 266 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fu, Y. et al. The role of mitochondria in the chemoresistance of pancreatic cancer cells. Cells 10, 497 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, J. et al. Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway. Cell 186, 2361–2379 e2325 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Saeed, M. et al. Low-dose doxycycline inhibits hydrogen peroxide-induced oxidative stress, MMP-2 up-regulation and contractile dysfunction in human saphenous vein grafts. Drug Des. Devel. Ther. 13, 1791–1801 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luger, A. L. et al. Doxycycline impairs mitochondrial function and protects human glioma cells from hypoxia-induced cell death: implications of using Tet-inducible systems. Int. J. Mol. Sci. 19, 1504 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Suhm, T. et al. Mitochondrial translation efficiency controls cytoplasmic protein homeostasis. Cell Metab. 27, 1309–1322.e1306 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Steinhorn, B. et al. Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat. Commun. 9, 4044 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nakagawa, T. et al. Doxycycline attenuates cisplatin-induced acute kidney injury through pleiotropic effects. Am. J. Physiol. Renal Physiol. 315, F1347–f1357 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bak, D. W. & Weerapana, E. Cysteine-mediated redox signalling in the mitochondria. Mol. Biosyst. 11, 678–697 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Lue, N. Z. & Liau, B. B. Base editor screens for in situ mutational scanning at scale. Mol. Cell 83, 2167–2187 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabaldón, T. & Koonin, E. V. Functional and evolutionary implications of gene orthology. Nat. Rev. Genet. 14, 360–366 (2013).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Anantharaman, V., Aravind, L. & Koonin, E. V. Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. Curr. Opin. Chem. Biol. 7, 12–20 (2003).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Boatner, L. M., Palafox, M. F., Schweppe, D. K. & Backus, K. M. CysDB: a human cysteine database based on experimental quantitative chemoproteomics. Cell. Chem. Biol. 30, 683–698 e683 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder–Robinson syndrome. Nat. Commun. 8, 1257 (2017).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kovtun, O. et al. Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature 561, 561–564 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hierro, A. et al. Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063–1067 (2007).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Haft, C. R. et al. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol. Biol. Cell 11, 4105–4116 (2000).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabuchi, M., Yanatori, I., Kawai, Y. & Kishi, F. Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J. Cell Sci. 123, 756–766 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Lo Conte, M. & Carroll, K. S. Chemoselective ligation of sulfinic acids with aryl-nitroso compounds. Angew. Chem. 51, 6502–6505 (2012).

    CAS 
    MATH 

    Google Scholar
     

  • Yin, Z. et al. Structural basis for a complex I mutation that blocks pathological ROS production. Nat. Commun. 12, 707 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pak, V. V. et al. Ultrasensitive genetically encoded indicator for hydrogen peroxide identifies roles for the oxidant in cell migration and mitochondrial function. Cell Metab. 31, 642–653.e646 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gai, X. et al. Oncogenic KRAS induces arginine auxotrophy and confers a therapeutic vulnerability to SLC7A1 inhibition in non-small cell lung cancer. Cancer Res. 84, 1963–1977 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jungnickel, K. E. J., Parker, J. L. & Newstead, S. Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nat. Commun. 9, 550 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atwal, S. et al. Clickable methionine as a universal probe for labelling intracellular bacteria. J. Microbiol. Methods 169, 105812 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kimura, Y. et al. Mito-FUNCAT-FACS reveals cellular heterogeneity in mitochondrial translation. RNA 28, 895–904 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hällberg, B. M. & Larsson, N. G. Making proteins in the powerhouse. Cell Metab. 20, 226–240 (2014).

    PubMed 
    MATH 

    Google Scholar
     

  • Rottenberg, S., Disler, C. & Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 21, 37–50 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Vasan, N. & Cantley, L. C. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat. Rev. Clin. Oncol. 19, 471–485 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Cutillo, G., Simon, D. K. & Eleuteri, S. VPS35 and the mitochondria: connecting the dots in Parkinson’s disease pathophysiology. Neurobiol. Dis. 145, 105056 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tang, F.-L. et al. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep. 12, 1631–1643 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wider, C. et al. Autosomal dominant dopa-responsive parkinsonism in a multigenerational Swiss family. Parkinsonism Relat. Disord. 14, 465–470 (2008).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sanmamed, M. F. & Chen, L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175, 313–326 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, M. Y., Jeon, J. W., Sievers, C. & Allen, C. T. Antigen processing and presentation in cancer immunotherapy. J. Immunother. Cancer 8, e001111 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanc-Durand, F., Clemence Wei Xian, L. & Tan, D. S. P. Targeting the immune microenvironment for ovarian cancer therapy. Front. Immunol. 14, 1328651 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canver, M. C. et al. Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nat. Protoc. 13, 946–986 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080.e1020 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–w245 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Adelmann, C. H., Wang, T., Sabatini, D. M. & Lander, E. S. Genome-wide CRISPR/Cas9 screening for identification of cancer genes in cell lines. Methods Mol. Biol. 1907, 125–136 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bar-Peled, L. et al. Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171, 696–709.e623 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bordier, C. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256, 1604–1607 (1981).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Weiss-Sadan, T. et al. NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer. Cell Metab. 35, 722 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pavlova, N. N. et al. Translation in amino-acid-poor environments is limited by tRNAGln charging. eLife 9, e62307 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliva, C. R., Ali, M. Y., Flor, S. & Griguer, C. E. COX4-1 promotes mitochondrial supercomplex assembly and limits reactive oxide species production in radioresistant GBM. Cell Stress 6, 45–60 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timón-Gómez, A. et al. Protocol for the analysis of yeast and human mitochondrial respiratory chain complexes and supercomplexes by blue native electrophoresis. STAR Protoc. 1, 100089 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nassar, L. R. et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 51, D1188–d1195 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Marino, S. M. & Gladyshev, V, N. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol. 404, 902–916 (2010).

  • Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    PubMed 
    MATH 

    Google Scholar
     

  • Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments