Thursday, February 27, 2025
No menu items!
HomeNatureOrbital hybridization in graphene-based artificial atoms

Orbital hybridization in graphene-based artificial atoms

  • Brown, T. L. et al. Chemistry: The Central Science (Pearson, 2015).

  • Oxtoby, D. W., Gillis, H. P. & Butler, L. J. Principles of Modern Chemistry (Cengage Learning, 2016).

  • Kouwenhoven, L. P., Austing, D. G. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701–736 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reimann, S. M. & Manninen, M. Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283–1342 (2002).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Buluta, I., Ashhab, S. & Nori, F. Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Ashoori, R. C. Electrons in artificial atoms. Nature 379, 413–419 (1996).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Karrai, K. et al. Hybridization of electronic states in quantum dots through photon emission. Nature 427, 135–138 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schedelbeck, G., Wegscheider, W., Bichler, M. & Abstreiter, G. Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules. Science 278, 1792–1795 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oosterkamp, T. H. et al. Microwave spectroscopy of a quantum-dot molecule. Nature 395, 873–876 (1998).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bayer, M. et al. Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Krenner, H. J. et al. Direct observation of controlled coupling in an individual quantum dot molecule. Phys. Rev. Lett. 94, 057402 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rodary, G. et al. Real space observation of electronic coupling between self-assembled quantum dots. Nano Lett. 19, 3699–3706 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fu, Z.-Q. et al. Relativistic artificial molecules realized by two coupled graphene quantum dots. Nano Lett. 20, 6738–6743 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dou, W. et al. High-yield production of quantum corrals in a surface reconstruction pattern. Nano Lett. 23, 148–154 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ge, Z. et al. Giant orbital magnetic moments and paramagnetic shift in artificial relativistic atoms and molecules. Nat. Nanotechnol. 18, 250–256 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zheng, Q. et al. Molecular collapse states in graphene/WSe2 heterostructure quantum dots. Phys. Rev. Lett. 130, 076202 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Silvestrov, P. G. & Efetov, K. B. Quantum dots in graphene. Phys. Rev. Lett. 98, 016802 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pereira, V. M., Nilsson, J. & Castro Neto, A. H. Coulomb impurity problem in graphene. Phys. Rev. Lett. 99, 166802 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Matulis, A. & Peeters, F. M. Quasibound states of quantum dots in single and bilayer graphene. Phys. Rev. B 77, 115423 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wang, Y. et al. Observing atomic collapse resonances in artificial nuclei on graphene. Science 340, 734–737 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhao, Y. et al. Creating and probing electron whispering-gallery modes in graphene. Science 348, 672–675 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Freitag, N. M. et al. Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings. Nano Lett. 16, 5798–5805 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gutiérrez, C., Brown, L., Kim, C.-J., Park, J. & Pasupathy, A. N. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nat. Phys. 12, 1069–1075 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Lee, J. et al. Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032–1036 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Ghahari, F. et al. An on/off Berry phase switch in circular graphene resonators. Science 356, 845–849 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jiang, Y. et al. Tuning a circular p–n junction in graphene from quantum confinement to optical guiding. Nat. Nanotech. 12, 1045–1049 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Bai, K.-K. et al. Generating atomically sharp p–n junctions in graphene and testing quantum electron optics on the nanoscale. Phys. Rev. B 97, 045413 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gutiérrez, C. et al. Interaction-driven quantum Hall wedding cake-like structures in graphene quantum dots. Science 361, 789–794 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zheng, Q., Zhuang, Y.-C., Sun, Q.-F. & He, L. Coexistence of electron whispering-gallery modes and atomic collapse states in graphene/WSe2 heterostructure quantum dots. Nat. Commun. 13, 1597 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, H.-Y., Ren, Y.-N., Zheng, Q., He, J.-Q. & He, L. Electron-electron interaction and correlation-induced two density waves with different Fermi velocities in graphene quantum dots. Phys. Rev. B 108, L081408 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ren, H.-Y., Mao, Y., Ren, Y.-N., Sun, Q.-F. & He, L. Tunable quantum confinement in individual nanoscale quantum dots via interfacial engineering. ACS Nano 19, 1352–1360 (2025).

  • Zhang, J. et al. Double quantum dots in atomically-precise graphene nanoribbons. Mater. Quantum. Technol. 3, 036201 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Banszerus, L. et al. Single-electron double quantum dots in bilayer graphene. Nano Lett. 20, 2005–2011 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Garreis, R. et al. Long-lived valley states in bilayer graphene quantum dots. Nat. Phys. 20, 428–434 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tong, C. et al. Pauli blockade of tunable two-electron spin and valley states in graphene quantum dots. Phys. Rev. Lett. 128, 067702 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wang, R. et al. Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater. 28, 1802473 (2018).

    Article 

    Google Scholar
     

  • Huang, H. H., Fan, X., Singh, D. J. & Zheng, W. T. Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale 12, 1247–1268 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yin, X. et al. Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 50, 10087–10115 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ren, Y.-N. et al. In situ creation and tailoring of interfacial quantum dots in graphene/transition metal dichalcogenide heterostructures. Phys. Rev. B 110, 125416 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhou, X.-F. et al. Relativistic artificial molecule of two coupled graphene quantum dots at tunable distances. Nat. Commun. 15, 8786 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shytov, A. V., Katsnelson, M. I. & Levitov, L. S. Atomic collapse and quasi-Rydberg states in graphene. Phys. Rev. Lett. 99, 246802 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Moldovan, D., Masir, M. R. & Peeters, F. M. Magnetic field dependence of the atomic collapse state in graphene. 2D Mater. 5, 015017 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Morgenstern, M. et al. Origin of Landau oscillations observed in scanning tunneling spectroscopy on n-InAs(110). Phys. Rev. B 62, 7257–7263 (2000).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments