Friday, January 30, 2026
No menu items!
HomeNatureOptical switching of a moiré Chern ferromagnet

Optical switching of a moiré Chern ferromagnet

  • Kimel, A. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Siegrist, F. et al. Light-wave dynamic control of magnetism. Nature 571, 240–244 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Qiu, J.-X. et al. Axion optical induction of antiferromagnetic order. Nat. Mater. 22, 583–590 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. 13, 031037 (2023).

    Article 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, X.-X. et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. 19, 838–842 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jiang, S., Xie, H., Shan, J. & Mak, K. F. Exchange magnetostriction in two-dimensional antiferromagnets. Nat. Mater. 19, 1295–1299 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 32, 2004533 (2020).

    Article 

    Google Scholar
     

  • Bhoi, D. et al. Nearly room-temperature ferromagnetism in a pressure-induced correlated metallic state of the van der Waals insulator CrGeTe3. Phys. Rev. Lett. 127, 217203 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 17, 256–261 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, B. et al. Light-tunable ferromagnetism in atomically thin Fe3GeTe2 driven by femtosecond laser pulse. Phys. Rev. Lett. 125, 267205 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 286–292 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 21, 1373–1378 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xie, T. et al. High-efficiency optical training of itinerant two-dimensional magnets. Nat. Phys. 21, 1118–1124 (2025).

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tschirhart, C. et al. Intrinsic spin Hall torque in a moiré Chern magnet. Nat. Phys. 19, 807–813 (2023).

    Article 

    Google Scholar
     

  • Adak, P. C., Sinha, S., Agarwal, A. & Deshmukh, M. M. Tunable moiré materials for probing Berry physics and topology. Nat. Rev. Mater. 9, 481–498 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. Signatures of unconventional superconductivity near reentrant and fractional quantum anomalous Hall insulators. Preprint at https://arxiv.org/abs/2504.06972 (2025).

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ju, L., MacDonald, A. H., Mak, K. F., Shan, J. & Xu, X. The fractional quantum anomalous Hall effect. Nat. Rev. Mater. 9, 455–459 (2024).

  • Basov, D., Averitt, R. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stoner, E. C. Collective electron ferromagnetism. Proc. R. Soc. Lond. A 165, 372–414 (1938).

    Article 
    ADS 

    Google Scholar
     

  • Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jiang, C. et al. Optical spin pumping induced pseudomagnetic field in two-dimensional heterostructures. Phys. Rev. B 98, 241410 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ji, Z. et al. Local probe of bulk and edge states in a fractional Chern insulator. Nature 635, 578–583 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chang, C.-Z., Liu, C.-X. & MacDonald, A. H. Colloquium: Quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yasuda, K. et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 358, 1311–1314 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Huber, O. et al. Optical control over topological Chern number in moiré materials. Preprint at https://arxiv.org/abs/2508.19063 (2025).

  • Holtzmann, W. et al. Optical control of integer and fractional Chern insulators. Preprint at https://arxiv.org/abs/2508.18639 (2025).

  • Park, H. et al. Ferromagnetism and topology of the higher flat band in a fractional Chern insulator. Nat. Phys. 21, 549–555 (2025).

  • Tang, Y. et al. Evidence of frustrated magnetic interactions in a Wigner–Mott insulator. Nat. Nanotechnol. 18, 233–237 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2, 6 (2018).

    Article 

    Google Scholar
     

  • Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Bae, S. et al. K-point longitudinal acoustic phonons are responsible for ultrafast intervalley scattering in monolayer MoSe2. Nat. Commun. 13, 4279 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van der Ziel, J., Pershan, P. S. & Malmstrom, L. Optically-induced magnetization resulting from the inverse Faraday effect. Phys. Rev. Lett. 15, 190 (1965).

    Article 
    ADS 

    Google Scholar
     

  • Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017).

    Article 

    Google Scholar
     

  • Song, X., Xie, S., Kang, K., Park, J. & Sih, V. Long-lived hole spin/valley polarization probed by Kerr rotation in monolayer WSe2. Nano Lett. 16, 5010–5014 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tang, Y., Mak, K. F. & Shan, J. Long valley lifetime of dark excitons in single-layer WSe2. Nat. Commun. 10, 4047 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Robert, C. et al. Excitonic properties of semiconducting monolayer and bilayer MoTe2. Phys. Rev. B 94, 155425 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Li, H., Kumar, U., Sun, K. & Lin, S.-Z. Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices. Phys. Rev. Res. 3, L032070 (2021).

    Article 

    Google Scholar
     

  • Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. Nature 635, 584–589 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, X., Wang, C., Zhang, X.-W., Cao, T. & Xiao, D. Orbital magnetization in correlated states of twisted bilayer transition metal dichalcogenides. Preprint at https://arxiv.org/abs/2510.01727 (2025).

  • Sharma, P. & Balatsky, A. V. Light-induced orbital magnetism in metals via inverse Faraday effect. Phys. Rev. B 110, 094302 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Nukui, K. et al. Light-induced torque in ferromagnetic metals via orbital angular momentum generated by photon helicity. Phys. Rev. Lett. 134, 016701 (2025).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator. Sci. Adv. 2, e1600167 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pershoguba, S. S. & Yakovenko, V. M. Optical control of topological memory based on orbital magnetization. Phys. Rev. B 105, 064423 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ovchinnikov, D. et al. Topological current divider in a Chern insulator junction. Nat. Commun. 13, 5967 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments