Thursday, January 9, 2025
No menu items!
HomeNatureObservation of vortices in a dipolar supersolid

Observation of vortices in a dipolar supersolid

  • Gross, E. P. Unified theory of interacting bosons. Phys. Rev. 106, 161 (1957).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gross, E. P. Classical theory of boson wave fields. Ann. Phys. 4, 57–74 (1958).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. J. Exp. Theor. Phys. 56, 2057–2068 (1969).

    CAS 

    Google Scholar
     

  • Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Leggett, A. J. Can a solid be “superfluid”? Phys. Rev. Lett. 25, 1543 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).


    Google Scholar
     

  • Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    CAS 

    Google Scholar
     

  • Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys 86, 026401 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 564, 386–389 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Klaus, L. et al. Observation of vortices and vortex stripes in a dipolar condensate. Nat. Phys. 18, 1453–1458 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bland, T., Lamporesi, G., Mark, M. J. & Ferlaino, F. Vortices in dipolar Bose–Einstein condensates. C. R. Phys. 24, 133–152 (2023).

    Article 

    Google Scholar
     

  • Norcia, M. A. et al. Can angular oscillations probe superfluidity in dipolar supersolids? Phys. Rev. Lett. 129, 040403 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bland, T. et al. Two-dimensional supersolid formation in dipolar condensates. Phys. Rev. Lett. 128, 195302 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Poli, E. et al. Glitches in rotating supersolids. Phys. Rev. Lett. 131, 223401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Onsager, L. Discussion on a paper by C. J. Gorter. Nuovo Cimento Suppl. 6, 249–250 (1949).

    MathSciNet 

    Google Scholar
     

  • Feynman, R. P. in Progress in Low Temperature Physics (ed. Gorter, C. J.) 17–53 (Elsevier, 1955).

  • Yarmchuk, E., Gordon, M. & Packard, R. Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bewley, G. P., Lathrop, D. P. & Sreenivasan, K. R. Visualization of quantized vortices. Nature 441, 588 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abo-Shaeer, J. R., Raman, C., Vogels, J. M. & Ketterle, W. Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476–479 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 4, 706–710 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wells, F. S., Pan, A. V., Wang, X. R., Fedoseev, S. A. & Hilgenkamp, H. Analysis of low-field isotropic vortex glass containing vortex groups in YBa2Cu3O7−x thin films visualized by scanning SQUID microscopy. Sci. Rep. 5, 8677 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Embon, L. et al. Imaging of super-fast dynamics and flow instabilities of superconducting vortices. Nat. Commun. 8, 85 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamidian, M. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nyéki, J. et al. Intertwined superfluid and density wave order in two-dimensional 4He. Nat. Phys. 13, 455–459 (2017).

    Article 

    Google Scholar
     

  • Levitin, L. V. et al. Evidence for a spatially modulated superfluid phase of 3He under confinement. Phys. Rev. Lett. 122, 085301 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Pair density wave state in a monolayer high-Tc iron-based superconductor. Nature 618, 934–939 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maragò, O. M. et al. Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas. Phys. Rev. Lett. 84, 2056 (2000).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tanzi, L. et al. Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia. Science 371, 1162–1165 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Roccuzzo, S., Recati, A. & Stringari, S. Moment of inertia and dynamical rotational response of a supersolid dipolar gas. Phys. Rev. A 105, 023316 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gallemí, A., Roccuzzo, S., Stringari, S. & Recati, A. Quantized vortices in dipolar supersolid Bose-Einstein-condensed gases. Phys. Rev. A 102, 023322 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Roccuzzo, S., Gallemí, A., Recati, A. & Stringari, S. Rotating a supersolid dipolar gas. Phys. Rev. Lett. 124, 045702 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Henkel, N., Cinti, F., Jain, P., Pupillo, G. & Pohl, T. Supersolid vortex crystals in Rydberg-dressed Bose-Einstein condensates. Phys. Rev. Lett. 108, 265301 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ancilotto, F., Barranco, M., Pi, M. & Reatto, L. Vortex properties in the extended supersolid phase of dipolar Bose-Einstein condensates. Phys. Rev. A 103, 033314 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Matsushita, T. Flux Pinning in Superconductors (Springer, 2014).

  • Prasad, S. B., Bland, T., Mulkerin, B. C., Parker, N. G. & Martin, A. M. Vortex lattice formation in dipolar Bose-Einstein condensates via rotation of the polarization. Phys. Rev. A 100, 023625 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stuhler, J. et al. Observation of dipole-dipole interaction in a degenerate quantum gas. Phys. Rev. Lett. 95, 150406 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose-Einstein condensates. Phys. Rev. A 93, 061603 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).


    Google Scholar
     

  • Bisset, R. N., Wilson, R. M., Baillie, D. & Blakie, P. B. Ground-state phase diagram of a dipolar condensate with quantum fluctuations. Phys. Rev. A 94, 033619 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Recati, A., Zambelli, F. & Stringari, S. Overcritical rotation of a trapped Bose-Einstein condensate. Phys. Rev. Lett. 86, 377 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinha, S. & Castin, Y. Dynamic instability of a rotating Bose-Einstein condensate. Phys. Rev. Lett. 87, 190402 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Madison, K. W., Chevy, F., Bretin, V. & Dalibard, J. Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation. Phys. Rev. Lett. 86, 4443 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • van Bijnen, R. M., O’Dell, D. H., Parker, N. G. & Martin, A. Dynamical instability of a rotating dipolar Bose-Einstein condensate. Phys. Rev. Lett. 98, 150401 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Sohmen, M. et al. Birth, life, and death of a dipolar supersolid. Phys. Rev. Lett. 126, 233401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matthews, M. R. et al. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Madison, K. W., Chevy, F., Wohlleben, W. & Dalibard, J. Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Å indik, M., Recati, A., Roccuzzo, S. M., Santos, L. & Stringari, S. Creation and robustness of quantized vortices in a dipolar supersolid when crossing the superfluid-to-supersolid transition. Phys. Rev. A 106, L061303 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Poli, E. et al. Maintaining supersolidity in one and two dimensions. Phys. Rev. A 104, 063307 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pomeau, Y. & Rica, S. Dynamics of a model of supersolid. Phys. Rev. Lett. 72, 2426 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kwok, W.-K. et al. Vortices in high-performance high-temperature superconductors. Rep. Prog. Phys. 79, 116501 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chamel, N. Neutron conduction in the inner crust of a neutron star in the framework of the band theory of solids. Phys. Rev. C 85, 035801 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Tang, Y., Sykes, A., Burdick, N. Q., Bohn, J. L. & Lev, B. L. s-wave scattering lengths of the strongly dipolar bosons 162Dy and 164Dy. Phys. Rev. A 92, 022703 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Maier, T. et al. Broad universal Feshbach resonances in the chaotic spectrum of dysprosium atoms. Phys. Rev. A 92, 060702 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Tang, Y. et al. Anisotropic expansion of a thermal dipolar Bose gas. Phys. Rev. Lett. 117, 155301 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lima, A. R. P. & Pelster, A. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 84, 041604 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Blakie, P., Bradley, A., Davis, M., Ballagh, R. & Gardiner, C. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys. 57, 363–455 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cidrim, A., dos Santos, F. E., Henn, E. A. & Macrì, T. Vortices in self-bound dipolar droplets. Phys. Rev. A 98, 023618 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, A.-C., Baillie, D., Bisset, R. N. & Blakie, P. B. Excitations of a vortex line in an elongated dipolar condensate. Phys. Rev. A 98, 063620 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, A.-C., Baillie, D. & Blakie, P. B. Numerical calculation of dipolar-quantum-droplet stationary states. Phys. Rev. Res. 3, 013283 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, G. et al. Strongly anisotropic vortices in dipolar quantum droplets. Phys. Rev. Lett. 133, 053804 (2024).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Scherer, D. R., Weiler, C. N., Neely, T. W. & Anderson, B. P. Vortex formation by merging of multiple trapped Bose-Einstein condensates. Phys. Rev. Lett. 98, 110402 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stringari, S. & Pitaevskii, L. Bose-Einstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

  • Powell, M. J. D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 155–162 (1964).

    Article 
    MathSciNet 

    Google Scholar
     

  • Casotti, E. et al. Data from “Observation of vortices in a dipolar supersolid”. Zenodo https://doi.org/10.5281/zenodo.10695943 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments