Wilczek, F. Problem of strong \({\mathcal{P}}\) and \({\mathcal{P}}\) invariance in the presence of instantons. Phys. Rev. Lett. 40, 279–282 (1978).
Weinberg, S. A new light boson? Phys. Rev. Lett. 40, 223–226 (1978).
Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).
Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).
Mogi, M. et al. Experimental signature of the parity anomaly in a semi-magnetic topological insulator. Nat. Phys. 18, 390–394 (2022).
Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).
Wang, J., Lei, C., MacDonald, A. H. & Binek, C. Dynamic axion field in the magnetoelectric antiferromagnet chromia. Preprint at https://arxiv.org/abs/1901.08536 (2019).
Zhang, J. et al. Large dynamical axion field in topological antiferromagnetic insulator Mn2Bi2Te5. Chin. Phys. Lett. 37, 077304 (2020).
Wang, H. et al. Dynamical axion state with hidden pseudospin Chern numbers in MnBi2Te4-based heterostructures. Phys. Rev. B 101, 081109 (2020).
Zhu, T., Wang, H., Zhang, H. & Xing, D. Tunable dynamical magnetoelectric effect in antiferromagnetic topological insulator MnBi2Te4 films. npj Comput. Mater. 7, 121 (2021).
Røising, H. S. et al. Axion–matter coupling in multiferroics. Phys. Rev. Res. 3, 033236 (2021).
Liu, Z., Xiao, J. & Wang, J. Dynamical magnetoelectric coupling in axion insulator thin films. Phys. Rev. B 105, 214424 (2022).
Lhachemi, M. N. Y. & Garate, I. Phononic dynamical axion in magnetic Dirac insulators. Phys. Rev. B 109, 144304 (2024).
Shiozaki, K. & Fujimoto, S. Dynamical axion in topological superconductors and superfluids. Phys. Rev. B 89, 054506 (2014).
Sekine, A. & Nomura, K. Chiral magnetic effect and anomalous Hall effect in antiferromagnetic insulators with spin–orbit coupling. Phys. Rev. Lett. 116, 096401 (2016).
Sekine, A. & Chiba, T. Electric-field-induced antiferromagnetic resonance in antiferromagnetic insulators with spin–orbit coupling. AIP Adv. 7, 055902 (2017).
Taguchi, K. et al. Electromagnetic effects induced by a time-dependent axion field. Phys. Rev. B 97, 214409 (2018).
Terças, H., Rodrigues, J. & Mendonça, J. Axion-plasmon polaritons in strongly magnetized plasmas. Phys. Rev. Lett. 120, 181803 (2018).
Xiao, Y. et al. Nonlinear level attraction of cavity axion polariton in antiferromagnetic topological insulator. Phys. Rev. B 104, 115147 (2021).
Curtis, J. B., Petrides, I. & Narang, P. Finite-momentum instability of a dynamical axion insulator. Phys. Rev. B 107, 205118 (2023).
Marsh, D. J., Fong, K. C., Lentz, E. W., Šmejkal, L. & Ali, M. N. Proposal to detect dark matter using axionic topological antiferromagnets. Phys. Rev. Lett. 123, 121601 (2019).
Schütte-Engel, J. et al. Axion quasiparticles for axion dark matter detection. J. Cosmol. Astropart. Phys. 2021, 066 (2021).
Chigusa, S., Moroi, T. & Nakayama, K. Axion/hidden-photon dark matter conversion into condensed matter axion. J. High Energy Phys. 2021, 1–33 (2021).
Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023).
De La Torre, A. et al. Nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).
Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).
Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).
Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).
Gao, F. Y. et al. Giant chiral magnetoelectric oscillations in a van der Waals multiferroic. Nature 632, 273–279 (2024).
Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).
Allen, M. et al. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl Acad. Sci. USA 116, 14511–14515 (2019).
Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019).
Sinchenko, A. A., Ballou, R., Lorenzo, J. E., Grenet, T. & Monceau, P. Does (TaSe4)2I really harbor an axionic charge density wave? Appl. Phys. Lett. 120, 063102 (2022).
Bartram, F. M. et al. Ultrafast coherent interlayer phonon dynamics in atomically thin layers of MnBi2Te4. npj Quantum Mater. 7, 84 (2022).
Lujan, D. et al. Magnons and magnetic fluctuations in atomically thin MnBi2Te4. Nat. Commun. 13, 2527 (2022).
Bartram, F. M. et al. Real-time observation of magnetization and magnon dynamics in a two-dimensional topological antiferromagnet MnBi2Te4. Sci. Bull. 68, 2734–2742 (2023).
Padmanabhan, H. et al. Large exchange coupling between localized spins and topological bands in MnBi2Te4. Adv. Mater. 34, 2202841 (2022).
Padmanabhan, H. et al. Interlayer magnetophononic coupling in MnBi2Te4. Nat. Commun. 13, 1929 (2022).
Cheng, L., Xiang, T. & Qi, J. Magnetic-order-mediated carrier and phonon dynamics in MnBi2Te4. Phys. Rev. Res. 6, 023073 (2024).
Qiu, J.-X. et al. Axion optical induction of antiferromagnetic order. Nat. Mater. 22, 583–590 (2023).
Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).
Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).
Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).
Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).
Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).
Yang, S. et al. Odd-even layer-number effect and layer-dependent magnetic phase diagrams in MnBi2Te4. Phys. Rev. X 11, 011003 (2021).
Ovchinnikov, D. et al. Intertwined topological and magnetic orders in atomically thin Chern insulator MnBi2Te4. Nano Lett. 21, 2544–2550 (2021).
Gao, A. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).
Cao, T., Shao, D.-F., Huang, K., Gurung, G. & Tsymbal, E. Y. Switchable anomalous Hall effects in polar-stacked 2D antiferromagnet MnBi2Te4. Nano Lett. 23, 3781–3787 (2023).
Li, Y. et al. Fabrication-induced even-odd discrepancy of magnetotransport in few-layer MnBi2Te4. Nat. Commun. 15, 3399 (2024).
Chong, S. K. et al. Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4. Nat. Commun. 15, 2881 (2024).
Fonseca, J. et al. Picosecond ultrasonics in magnetic topological insulator MnBi2Te4. Nano Lett. 24, 10562–10568 (2024).
Zhang, X.-X. et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. 19, 838–842 (2020).
Gorghetto, M., Hardy, E. & Villadoro, G. More axions from strings. SciPost Phys. 10, 050 (2021).
Saikawa, K., Redondo, J., Vaquero, A. & Kaltschmidt, M. Spectrum of global string networks and the axion dark matter mass. J. Cosmol. Astropart. Phys. 2024, 043 (2024).
Horns, D. et al. Searching for WISPy cold dark matter with a dish antenna. J. Cosmol. Astropart. Phys. 2013, 016 (2013).
Liu, J. et al. Broadband solenoidal haloscope for terahertz axion detection. Phys. Rev. Lett. 128, 131801 (2022).
Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).
Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).
Zhang, Z. et al. Terahertz-field-driven magnon upconversion in an antiferromagnet. Nat. Phys. 20, 788–793 (2024).
Yan, J.-Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).
Zhong, D. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020).
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).
Xiao, D., Shi, J. & Niu, Q. Berry phase correction to electron density of states in solids. Phys. Rev. Lett. 95, 137204 (2005).
Thonhauser, T., Ceresoli, D., Vanderbilt, D. & Resta, R. Orbital magnetization in periodic insulators. Phys. Rev. Lett. 95, 137205 (2005).
Ceresoli, D., Thonhauser, T., Vanderbilt, D. & Resta, R. Orbital magnetization in crystalline solids: multi-band insulators, Chern insulators, and metals. Phys. Rev. B 74, 024408 (2006).
Raffaello, B. & Raffaele, R. Orbital magnetization in insulators: bulk versus surface. Phys. Rev. B 93, 174417 (2016).
Chadha-Day, F., Ellis, J. & Marsh, D. J. E. Axion dark matter: what is it and why now? Sci. Adv. 8, eabj3618 (2022).
Svrcek, P. & Witten, E. Axions in string theory. J. High Energy Phys. 2006, 051 (2006).
O’Hare, C. cajohare/axionLimits:AxionLimits. GitHub https://cajohare.github.io/AxionLimits/ (2020).
Tao, Z. et al. Valley-coherent quantum anomalous Hall state in AB-stacked MoTe2/WSe2 bilayers. Phys. Rev. X 14, 011004 (2024).
Ma, J. et al. Improving the sensitivity of DC magneto-optical Kerr effect measurement to 10−7 rad/\(\sqrt{{\rm{Hz}}}\). Chin. Opt. Lett. 20, 111201 (2022).
Liu, Z. & Wang, J. Anisotropic topological magnetoelectric effect in axion insulators. Phys. Rev. B 101, 205130 (2020).
Varnava, N. & Vanderbilt, D. Surfaces of axion insulators. Phys. Rev. B 98, 245117 (2018).