Saturday, April 19, 2025
No menu items!
HomeNatureObservation of the axion quasiparticle in 2D MnBi2Te4

Observation of the axion quasiparticle in 2D MnBi2Te4

  • Wilczek, F. Problem of strong \({\mathcal{P}}\) and \({\mathcal{P}}\) invariance in the presence of instantons. Phys. Rev. Lett. 40, 279–282 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weinberg, S. A new light boson? Phys. Rev. Lett. 40, 223–226 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Mogi, M. et al. Experimental signature of the parity anomaly in a semi-magnetic topological insulator. Nat. Phys. 18, 390–394 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J., Lei, C., MacDonald, A. H. & Binek, C. Dynamic axion field in the magnetoelectric antiferromagnet chromia. Preprint at https://arxiv.org/abs/1901.08536 (2019).

  • Zhang, J. et al. Large dynamical axion field in topological antiferromagnetic insulator Mn2Bi2Te5. Chin. Phys. Lett. 37, 077304 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Dynamical axion state with hidden pseudospin Chern numbers in MnBi2Te4-based heterostructures. Phys. Rev. B 101, 081109 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, T., Wang, H., Zhang, H. & Xing, D. Tunable dynamical magnetoelectric effect in antiferromagnetic topological insulator MnBi2Te4 films. npj Comput. Mater. 7, 121 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Røising, H. S. et al. Axion–matter coupling in multiferroics. Phys. Rev. Res. 3, 033236 (2021).

    Article 

    Google Scholar
     

  • Liu, Z., Xiao, J. & Wang, J. Dynamical magnetoelectric coupling in axion insulator thin films. Phys. Rev. B 105, 214424 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lhachemi, M. N. Y. & Garate, I. Phononic dynamical axion in magnetic Dirac insulators. Phys. Rev. B 109, 144304 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shiozaki, K. & Fujimoto, S. Dynamical axion in topological superconductors and superfluids. Phys. Rev. B 89, 054506 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Sekine, A. & Nomura, K. Chiral magnetic effect and anomalous Hall effect in antiferromagnetic insulators with spin–orbit coupling. Phys. Rev. Lett. 116, 096401 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sekine, A. & Chiba, T. Electric-field-induced antiferromagnetic resonance in antiferromagnetic insulators with spin–orbit coupling. AIP Adv. 7, 055902 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Taguchi, K. et al. Electromagnetic effects induced by a time-dependent axion field. Phys. Rev. B 97, 214409 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Terças, H., Rodrigues, J. & Mendonça, J. Axion-plasmon polaritons in strongly magnetized plasmas. Phys. Rev. Lett. 120, 181803 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiao, Y. et al. Nonlinear level attraction of cavity axion polariton in antiferromagnetic topological insulator. Phys. Rev. B 104, 115147 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Curtis, J. B., Petrides, I. & Narang, P. Finite-momentum instability of a dynamical axion insulator. Phys. Rev. B 107, 205118 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marsh, D. J., Fong, K. C., Lentz, E. W., Šmejkal, L. & Ali, M. N. Proposal to detect dark matter using axionic topological antiferromagnets. Phys. Rev. Lett. 123, 121601 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schütte-Engel, J. et al. Axion quasiparticles for axion dark matter detection. J. Cosmol. Astropart. Phys. 2021, 066 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Chigusa, S., Moroi, T. & Nakayama, K. Axion/hidden-photon dark matter conversion into condensed matter axion. J. High Energy Phys. 2021, 1–33 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • De La Torre, A. et al. Nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, F. Y. et al. Giant chiral magnetoelectric oscillations in a van der Waals multiferroic. Nature 632, 273–279 (2024).

  • Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Allen, M. et al. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl Acad. Sci. USA 116, 14511–14515 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinchenko, A. A., Ballou, R., Lorenzo, J. E., Grenet, T. & Monceau, P. Does (TaSe4)2I really harbor an axionic charge density wave? Appl. Phys. Lett. 120, 063102 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bartram, F. M. et al. Ultrafast coherent interlayer phonon dynamics in atomically thin layers of MnBi2Te4. npj Quantum Mater. 7, 84 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lujan, D. et al. Magnons and magnetic fluctuations in atomically thin MnBi2Te4. Nat. Commun. 13, 2527 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartram, F. M. et al. Real-time observation of magnetization and magnon dynamics in a two-dimensional topological antiferromagnet MnBi2Te4. Sci. Bull. 68, 2734–2742 (2023).

    Article 

    Google Scholar
     

  • Padmanabhan, H. et al. Large exchange coupling between localized spins and topological bands in MnBi2Te4. Adv. Mater. 34, 2202841 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Padmanabhan, H. et al. Interlayer magnetophononic coupling in MnBi2Te4. Nat. Commun. 13, 1929 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, L., Xiang, T. & Qi, J. Magnetic-order-mediated carrier and phonon dynamics in MnBi2Te4. Phys. Rev. Res. 6, 023073 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, J.-X. et al. Axion optical induction of antiferromagnetic order. Nat. Mater. 22, 583–590 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, S. et al. Odd-even layer-number effect and layer-dependent magnetic phase diagrams in MnBi2Te4. Phys. Rev. X 11, 011003 (2021).

    CAS 

    Google Scholar
     

  • Ovchinnikov, D. et al. Intertwined topological and magnetic orders in atomically thin Chern insulator MnBi2Te4. Nano Lett. 21, 2544–2550 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, A. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, T., Shao, D.-F., Huang, K., Gurung, G. & Tsymbal, E. Y. Switchable anomalous Hall effects in polar-stacked 2D antiferromagnet MnBi2Te4. Nano Lett. 23, 3781–3787 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Fabrication-induced even-odd discrepancy of magnetotransport in few-layer MnBi2Te4. Nat. Commun. 15, 3399 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong, S. K. et al. Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4. Nat. Commun. 15, 2881 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fonseca, J. et al. Picosecond ultrasonics in magnetic topological insulator MnBi2Te4. Nano Lett. 24, 10562–10568 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X.-X. et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. 19, 838–842 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorghetto, M., Hardy, E. & Villadoro, G. More axions from strings. SciPost Phys. 10, 050 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Saikawa, K., Redondo, J., Vaquero, A. & Kaltschmidt, M. Spectrum of global string networks and the axion dark matter mass. J. Cosmol. Astropart. Phys. 2024, 043 (2024).

    Article 

    Google Scholar
     

  • Horns, D. et al. Searching for WISPy cold dark matter with a dish antenna. J. Cosmol. Astropart. Phys. 2013, 016 (2013).

    Article 

    Google Scholar
     

  • Liu, J. et al. Broadband solenoidal haloscope for terahertz axion detection. Phys. Rev. Lett. 128, 131801 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Terahertz-field-driven magnon upconversion in an antiferromagnet. Nat. Phys. 20, 788–793 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yan, J.-Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, D. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, D., Shi, J. & Niu, Q. Berry phase correction to electron density of states in solids. Phys. Rev. Lett. 95, 137204 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Thonhauser, T., Ceresoli, D., Vanderbilt, D. & Resta, R. Orbital magnetization in periodic insulators. Phys. Rev. Lett. 95, 137205 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ceresoli, D., Thonhauser, T., Vanderbilt, D. & Resta, R. Orbital magnetization in crystalline solids: multi-band insulators, Chern insulators, and metals. Phys. Rev. B 74, 024408 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Raffaello, B. & Raffaele, R. Orbital magnetization in insulators: bulk versus surface. Phys. Rev. B 93, 174417 (2016).

    Article 

    Google Scholar
     

  • Chadha-Day, F., Ellis, J. & Marsh, D. J. E. Axion dark matter: what is it and why now? Sci. Adv. 8, eabj3618 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svrcek, P. & Witten, E. Axions in string theory. J. High Energy Phys. 2006, 051 (2006).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • O’Hare, C. cajohare/axionLimits:AxionLimits. GitHub https://cajohare.github.io/AxionLimits/ (2020).

  • Tao, Z. et al. Valley-coherent quantum anomalous Hall state in AB-stacked MoTe2/WSe2 bilayers. Phys. Rev. X 14, 011004 (2024).

    CAS 

    Google Scholar
     

  • Ma, J. et al. Improving the sensitivity of DC magneto-optical Kerr effect measurement to 10−7 rad/\(\sqrt{{\rm{Hz}}}\). Chin. Opt. Lett. 20, 111201 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Z. & Wang, J. Anisotropic topological magnetoelectric effect in axion insulators. Phys. Rev. B 101, 205130 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Varnava, N. & Vanderbilt, D. Surfaces of axion insulators. Phys. Rev. B 98, 245117 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments